Maria do RosÃ;rio Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996701/publications.pdf

Version: 2024-02-01

68 papers 1,498 citations

20 h-index 330143 37 g-index

68 all docs 68
docs citations

68 times ranked

1272 citing authors

#	Article	IF	CITATIONS
1	Unique stiffness-deformability features of dendrimeric silica reinforced HDPE nanocomposites obtained by an innovative route. Microporous and Mesoporous Materials, 2022, 331, 111619.	4.4	3
2	Nanocomposites of PCL and SBA-15 Particles Prepared by Extrusion: Structural Characteristics, Confinement of PCL Chains within SBA-15 Nanometric Channels and Mechanical Behavior. Polymers, 2022, 14, 129.	4.5	6
3	Assessment of acidity and the zeolite porous structure on hydrocracking of HDPE. Sustainable Energy and Fuels, 2022, 6, 3611-3625.	4.9	6
4	A thermogravimetric study of HDPE conversion under a reductive atmosphere. Catalysis Today, 2021, 379, 192-204.	4.4	11
5	Innovative route for the preparation of high-performance polyolefin materials based on unique dendrimeric silica particles. Polymer Chemistry, 2021, 12, 4546-4556.	3.9	5
6	Local Induction Heating Capabilities of Zeolites Charged with Metal and Oxide MNPs for Application in HDPE Hydrocracking: A Proof of Concept. Materials, 2021, 14, 1029.	2.9	7
7	H-USY and H-ZSM-5 zeolites as catalysts for HDPE conversion under a hydrogen reductive atmosphere. Sustainable Energy and Fuels, 2021, 5, 1134-1147.	4.9	13
8	Confinement in Extruded Nanocomposites Based on PCL and Mesoporous Silicas: Effect of Pore Sizes and Their Influence in Ultimate Mechanical Response. Journal of Composites Science, 2021, 5, 321.	3.0	5
9	Improvement of viscoelastic, elastic and plastic properties of Poly(L-lactide)/Graphene Oxide-Graft-Poly(L-lactide) nanocomposites by modulation of grafted chain length. Composites Science and Technology, 2020, 199, 108350.	7.8	3
10	Induction Heating in Nanoparticle Impregnated Zeolite. Materials, 2020, 13, 4013.	2.9	8
11	Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 202-207.	3.1	11
12	Aluminum Containing Dendrimeric Silica Nanoparticles as Promising Metallocene Catalyst Supports for Ethylene Polymerization. ChemCatChem, 2018, 10, 3761-3769.	3.7	4
13	Hybrid materials obtained by in situ polymerization based on polypropylene and mesoporous SBA-15 silica particles: Catalytic aspects, crystalline details and mechanical behavior. Polymer, 2018, 151, 218-230.	3.8	19
14	New route to functional polyolefins: sulfonation of poly[ethyleneâ€ <i>co</i> â€(5,7â€dimethyloctaâ€1,6â€diene)] and evaluation of properties. Polymer International, 2017, 66, 1005-1012.] 3.1	1
15	Reactivity of cationic α-diimine cyclopentadienyl nickel complexes towards AlEt2Cl: synthesis, characterisation and ethylene polymerisation. Catalysis Science and Technology, 2017, 7, 3128-3142.	4.1	6
16	UHMWPE/HDPE in-reactor blends, prepared by in situ polymerization: Synthetic aspects and characterization. EXPRESS Polymer Letters, 2017, 11, 344-361.	2.1	15
17	A New Post-Metallocene-Ti Catalyst with Maltolate Bidentade Ligand: an Investigation in Heterogeneous Polymerization Reactions in Different Mesoporous Supports. Journal of the Brazilian Chemical Society, 2016, , .	0.6	O
18	Preparation of polypropyleneâ€based nanocomposites using nanosized <scp>MCM</scp> â€41 as support and <i>in situ</i>) polymerization. Polymer International, 2016, 65, 320-326.	3.1	7

#	Article	IF	CITATIONS
19	Hafnocene catalyst for polyethylene and its nanocomposites with SBA-15 by in situ polymerization: Immobilization approaches, catalytic behavior and properties evaluation. European Polymer Journal, 2016, 85, 298-312.	5.4	7
20	Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: Catalytic aspects of in situ polymerization, crystalline features and mechanical properties. Microporous and Mesoporous Materials, 2016, 232, 86-96.	4.4	26
21	UHMWPE/SBA-15 nanocomposites synthesized by in situ polymerization. Microporous and Mesoporous Materials, 2016, 232, 13-25.	4.4	21
22	Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films. Materials Chemistry and Physics, 2015, 166, 122-132.	4.0	27
23	Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups. Polymer Degradation and Stability, 2015, 111, 78-88.	5.8	36
24	Copolymerisation of ε-caprolactone and trimethylene carbonate catalysed by methanesulfonic acid. European Polymer Journal, 2013, 49, 4025-4034.	5.4	17
25	Decorated MCM-41/polyethylene hybrids: Crystalline details and viscoelastic behavior. Polymer, 2013, 54, 2611-2620.	3.8	25
26	Functionalization of Mesoporous MCMâ€41 (Nano)particles: Preparation Methodologies, Role on Catalytic Features, and Dispersion Within Polyethylene Nanocomposites. ChemCatChem, 2013, 5, 966-976.	3.7	14
27	A New Insight Into the Mechanism of the Ringâ€Opening Polymerization of Trimethylene Carbonate Catalyzed by Methanesulfonic Acid. Macromolecular Chemistry and Physics, 2013, 214, 85-93.	2.2	17
28	Nanostructured silica materials in olefin polymerisation: From catalytic behaviour to polymer characteristics. Progress in Polymer Science, 2012, 37, 1764-1804.	24.7	59
29	Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization. Journal of Membrane Science, 2012, 415-416, 702-711.	8.2	42
30	1H-NMR study of maleic anhydride modified ethylene-diene copolymers. Journal of Polymer Research, 2011, 18, 527-532.	2.4	8
31	Metallocene ethyleneâ€ <i>co</i> â€(5,7â€dimethylocta‶, 6â€diene) copolymers crosslinked using electron bear irradiation: a tunable alternative. Polymer International, 2011, 60, 1309-1317.	m 3.1	3
32	Hybrid HDPE/MCM-41 nanocomposites: Crystalline structure and viscoelastic behaviour. Microporous and Mesoporous Materials, 2010, 130, 215-223.	4.4	40
33	Novel Supports for Ethylene Polymerisation Based on Polystyrene Polymers. Macromolecular Symposia, 2010, 296, 11-20.	0.7	0
34	Self-Reinforced Hybrid Polyethylene/MCM-41 Nanocomposites: <l>ln-Situ</l> Polymerisation and Effect of MCM-41 Content on Rigidity. Journal of Nanoscience and Nanotechnology, 2009, 9, 3966-3974.	0.9	34
35	Mesoporous Ga-MCM-41 as support for metallocene catalysts: Acidity–activity relationship. Journal of Molecular Catalysis A, 2009, 310, 1-8.	4.8	20
36	Crosslinking in metallocene ethylene-co-5,7-dimethylocta-1,6-diene copolymers initiated by electron-beam irradiation. Polymer, 2009, 50, 1095-1102.	3.8	14

#	Article	lF	Citations
37	Maleic anhydride modified ethylene–diene copolymers: Synthesis and properties. Reactive and Functional Polymers, 2008, 68, 519-526.	4.1	22
38	Synthesis, characterisation and solid state structures of \hat{l}_{\pm} -diimine cobalt(II) complexes: Ethylene polymerisation tests. Journal of Organometallic Chemistry, 2008, 693, 769-775.	1.8	45
39	Mesoporous Ga-MCM-41: A very efficient support for the heterogenisation of metallocene catalysts. Catalysis Communications, 2008, 10, 71-73.	3. 3	21
40	Ethylene/10-Undecenoic Acid Copolymers Prepared with Different Metallocene Catalysts. Macromolecular Chemistry and Physics, 2007, 208, 841-850.	2.2	12
41	Novel Organic Activators for Single Site Iron Catalysts. Macromolecular Chemistry and Physics, 2007, 208, 815-822.	2.2	5
42	Ethylene polymerisation with zirconocene supported in Al-modified MCM-41: Catalytic behaviour and polymer properties. Journal of Molecular Catalysis A, 2007, 277, 93-101.	4.8	30
43	Evolution of a Metallocenic sPP with Time: Changes in Crystalline Content and Enthalpic Relaxation. Macromolecular Chemistry and Physics, 2006, 207, 1564-1574.	2.2	3
44	Living and block polymerization of î±-olefins using a Ni(II)-î±-diimine catalyst containing OSiPh2tBu groups. Polymer, 2005, 46, 2122-2132.	3.8	55
45	Synthesis of polyolefin based materials with improved thermo-oxidative stability. Macromolecular Symposia, 2004, 213, 347-356.	0.7	2
46	Metallocenic copolymers of ethylene and 5,7-dimethylocta-1,6-diene: Structural characterization and mechanical behavior. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3797-3808.	2.1	7
47	Copolymerization of ethylene and non-conjugated diene with metallocene/methylaluminoxane system supported on MCM-41 mesoporous material. European Polymer Journal, 2004, 40, 2555-2563.	5.4	7
48	Structural characterization and mechanical behavior of metallocenic copolymers of ethylene and 5,7-dimethylocta-1,6-diene. Macromolecular Symposia, 2004, 213, 315-326.	0.7	0
49	Functionalisation of Polyolefins: Grafting of Phenol Groups on Olefin/5,7-Dimethylocta-1,6-diene Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 1889-1897.	2,2	6
50	[$(\hat{i}\cdot 5-C5Me4)$ SiMe2(NtertBu)]TiCl2 as Pre-Catalyst for the Copolymerisation of Ethylene with 5,7-Dimethylocta-1,6-diene and with 3,7-Dimethylocta-1,6-diene. Macromolecular Chemistry and Physics, 2002, 203, 139-145.	2.2	18
51	Title is missing!. Macromolecular Chemistry and Physics, 2002, 203, 1983-1987.	2.2	3
52	Addition polymerisation of 5-vinyl-2-norbornene with nickel bis(acetyl acetonate)/methylaluminoxane system. Journal of Molecular Catalysis A, 2002, 185, 81-85.	4.8	16
53	Polymerization of Ethylene by the Electrophilic Heteroscorpionate-Containing Complexes [TiCl3(bdmpza)] and [TiCl2(bdmpza){O(CH2)4Cl}] (bdmpza = Bis(3,5-dimethylpyrazol-1-yl)acetate). Organometallics, 2001, 20, 2428-2430.	2.3	64
54	Structural characteristics and gas permeation properties of polynorbornenes with retained bicyclic structure. Polymer, 2001, 42, 2455-2462.	3.8	90

#	Article	IF	CITATIONS
55	Experimental evidence of the glass transition in a metallocene ethylene-1-octene copolymer and its composites with glass fibre. Polymer, 2001, 42, 7197-7202.	3.8	19
56	Metallocene-Catalysed Copolymerisation of Ethylene with 10-Undecenoic Acid: The Effect of Experimental Conditions. Macromolecular Chemistry and Physics, 2001, 202, 2195-2201.	2.2	15
57	Transition Metal Complexes as Catalysts for the Homo- and Copolymerisation of Olefins and Non-Conjugated Dienes. Macromolecular Chemistry and Physics, 2001, 202, 3043-3048.	2.2	23
58	Homo- and copolymerisation of norbornene and styrene with nickel bis(acetyl) Tj ETQq0 0 0 rgBT /Overlock 10 T	f 50 622 T	Гd (acetonate)
59	Improved adhesion of polyethylene by copolymerisation of ethylene with polar monomers. Chemical Engineering Science, 2001, 56, 4191-4196.	3.8	27
60	Dynamic mechanical relaxations and microhardness indentations of styrene–ethylene copolymers obtained with heterogeneous catalysts. European Polymer Journal, 2000, 36, 879-887.	5.4	3
61	Synthesis of Zirconium(IV) Monocyclopentadienylâ^'Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (Î-5-C5Me5)Zr{2,6-OC6H3(CH3)2}3. Organometallics, 2000, 19, 2837-2843.	2.3	52
62	Supported Metallocene Complexes for Ethylene and Propylene Polymerizations:Â Preparation and Activity. Industrial & Engineering Chemistry Research, 1997, 36, 1224-1237.	3.7	210
63	Isospecific homo- and copolymerization of styrene with ethylene in the presence of VCl3, AlCl3 as catalyst. Macromolecular Rapid Communications, 1996, 17, 461-469.	3.9	20
64	Kinetic investigation of parameters governing the high-temperature polymerization of ethylene initiated by supported VCl3 catalytic systems. European Polymer Journal, 1996, 32, 811-819.	5.4	4
65	Homo and copolymerization of ethylene: improvement of supported vanadium catalysts performance by halocarbons. Macromolecular Chemistry and Physics, 1995, 196, 3833-3844.	2.2	10
66	Resolution of DSC thermograms of LLDPE: a route to an analytical characterization of comonomer units distribution. Polimery, 1994, 39, 616-619.	0.7	3
67	Synthesis and activity of vanadium-based supported catalysts for ethylene polymerization. Applied Catalysis A: General, 1993, 102, 1-12.	4.3	5
68	Evaluation of the heterogeneity in linear low-density polyethylene comonomer unit distribution by differential scanning calorimetry characterization of thermally treated samples. Polymer, 1992, 33, 4337-4342.	3.8	113