Beatriz H JuÃ;rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996653/publications.pdf

Version: 2024-02-01

257450 206112 2,355 52 24 48 citations g-index h-index papers 55 55 55 4254 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science, 2010, 329, 550-553.	12.6	756
2	Engineered Planar Defects Embedded in Opals. Advanced Materials, 2004, 16, 341-345.	21.0	143
3	Ag/Ag ₂ S Nanocrystals for High Sensitivity Nearâ€Infrared Luminescence Nanothermometry. Advanced Functional Materials, 2017, 27, 1604629.	14.9	110
4	Quantum Dot Attachment and Morphology Control by Carbon Nanotubes. Nano Letters, 2007, 7, 3564-3568.	9.1	101
5	ZnO Inverse Opals by Chemical Vapor Deposition. Advanced Materials, 2005, 17, 2761-2765.	21.0	94
6	Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir, 2012, 28, 8862-8866.	3 . 5	85
7	In Vivo Contactless Brain Nanothermometry. Advanced Functional Materials, 2018, 28, 1806088.	14.9	78
8	Perspectives for Ag ₂ S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality. Nanoscale, 2019, 11, 19251-19264.	5.6	69
9	Shape Evolution of CdSe Nanoparticles Controlled by Halogen Compounds. Chemistry of Materials, 2014, 26, 1813-1821.	6.7	65
10	High-Energy Photonic Bandgap in Sb2S3 Inverse Opals by Sulfidation Processing. Advanced Materials, 2003, 15, 319-323.	21.0	58
11	Self-assembly approach to optical metamaterials. Journal of Optics, 2005, 7, S244-S254.	1.5	56
12	Optical and morphological study of disorder in opals. Journal of Applied Physics, 2005, 97, 063502.	2.5	53
13	Infraredâ€Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. Advanced Materials, 2021, 33, e2100077.	21.0	51
14	Time resolved spectroscopy of infrared emitting Ag ₂ S nanocrystals for subcutaneous thermometry. Nanoscale, 2017, 9, 2505-2513.	5.6	41
15	Size, Shape, and Phase Control in Ultrathin CdSe Nanosheets. Nano Letters, 2017, 17, 4165-4171.	9.1	41
16	Carbon Supported CdSe Nanocrystals. Journal of the American Chemical Society, 2008, 130, 15282-15284.	13.7	40
17	Antimony Trisulfide Inverted Opals: Growth, Characterization, and Photonic Properties. Advanced Materials, 2002, 14, 1486-1490.	21.0	38
18	3-D characterization of CdSe nanoparticles attached to carbon nanotubes. Nano Research, 2008, 1, 89-97.	10.4	37

#	Article	IF	CITATIONS
19	CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres. Journal of Materials Chemistry, 2010, 20, 1367-1374.	6.7	35
20	Formation of Zinc Inverted Opals on Indium Tin Oxide and Silicon Substrates by Electrochemical Deposition. Journal of Physical Chemistry B, 2004, 108, 16708-16712.	2.6	34
21	Reversible Attachment of Platinum Alloy Nanoparticles to Nonfunctionalized Carbon Nanotubes. ACS Nano, 2010, 4, 2438-2444.	14.6	31
22	Seeded Synthesis of Monodisperse Core–Shell and Hollow Carbon Spheres. Small, 2016, 12, 4357-4362.	10.0	27
23	Selective Formation of Inverted Opals by Electron-Beam Lithography. Advanced Materials, 2004, 16, 1732-1736.	21.0	25
24	Protective Ligand Shells for Luminescent SiO ₂ -Coated Alloyed Semiconductor Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6935-6945.	8.0	25
25	Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv Journal of Structural Biology, 2016, 193, 23-32.	2.8	25
26	Effect of Chloride Ligands on CdSe Nanocrystals by Cyclic Voltammetry and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4998-5004.	3.1	24
27	Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals. Journal of Materials Chemistry, 2010, 20, 10602.	6.7	22
28	Interfacing Quantum Dots and Graphitic Surfaces with Chlorine Atomic Ligands. ACS Nano, 2013, 7, 2559-2565.	14.6	22
29	Laser Heating Tunability by Offâ€Resonant Irradiation of Gold Nanoparticles. Small, 2014, 10, 376-384.	10.0	21
30	Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes. Nanoscale, 2012, 4, 251-256.	5.6	15
31	Hierarchically Porous Carbon Photonic Structures. Advanced Functional Materials, 2018, 28, 1703885.	14.9	15
32	Synthesis and characterization of Ag ₂ S and Ag ₂ S/Ag ₂ (S,Se) NIR nanocrystals. Nanoscale, 2019, 11, 9194-9200.	5.6	15
33	Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 2011, 11, 4742-4747.	9.1	14
34	Cl-capped CdSe nanocrystals via in situ generation of chloride anions. Nanoscale, 2014, 6, 6812-6818.	5.6	13
35	Large-Area Heterostructures from Graphene and Encapsulated Colloidal Quantum Dots via the Langmuir–Blodgett Method. ACS Applied Materials & Interfaces, 2018, 10, 6805-6809.	8.0	12
36	Formation of nanocrystalline Zinc on ITO and Silicon substrates by electrochemical deposition. Journal of Applied Electrochemistry, 2006, 36, 499-505.	2.9	8

#	Article	IF	CITATIONS
37	Shell or Dots â^' Precursor Controlled Morphology of Auâ€"Se Deposits on CdSe Nanoparticles. Chemistry of Materials, 2016, 28, 2704-2714.	6.7	8
38	Photoluminescence Activation of Organic Dyes <i>via</i> Optically Trapped Quantum Dots. ACS Nano, 2019, 13, 7223-7230.	14.6	8
39	Luminescence Dynamics of Silica-Encapsulated Quantum Dots During Optical Trapping. Journal of Physical Chemistry C, 2017, 121, 10124-10130.	3.1	7
40	Unexpected Optical Blue Shift in Large Colloidal Quantum Dots by Anionic Migration and Exchange. Journal of Physical Chemistry Letters, 2018, 9, 3124-3130.	4.6	6
41	The Role of Halogens in the Synthesis of Semiconductor Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2015, 229, 119-137.	2.8	5
42	Microgels and Nanoparticles: Where Micro and Nano Go Hand in Hand. Zeitschrift Fur Physikalische Chemie, 2015, 229, 263-282.	2.8	5
43	Thermal Ligand Desorption in CdSe Quantum Dots by Correlated XPS and STM. Particle and Particle Systems Characterization, 2016, 33, 358-362.	2.3	5
44	Opals for Photonic Band-Gap Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1143-1150.	2.9	3
45	Photodetecting Heterostructures from Graphene and Encapsulated Colloidal Quantum Dot Films. ACS Omega, 2019, 4, 15824-15828.	3 . 5	3
46	Inorganically coated colloidal quantum dots in polar solvents using a microemulsion-assisted method. Physical Chemistry Chemical Physics, 2017, 19, 1999-2007.	2.8	2
47	Siliconâ€Based Photonic Architectures from Hierarchically Porous Carbon Opals. Particle and Particle Systems Characterization, 2020, 37, 1900396.	2.3	2
48	Photonic slab heterostructures based on opals. , 2004, 5450, 1.		1
49	Characterizing the CdSe nanodots in the vicinity of the monolayer covering range. RSC Advances, 2019, 9, 41531-41539.	3 . 6	1
50	Materials aspects of opals as photonic crystals. , 0, , .		0
51	Optical and morphological study of compound polymer opals. , 2004, , .		0
52	Optical trapping and luminescence of silica encapsulated quantum dots (Conference Presentation)., 2016, , .		0