
Zhengxian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drastic promotion of the photocathodic protection property of TiO2 nanotube films decorated with n-type CuInS2 nanoparticles. Journal of Alloys and Compounds, 2022, 890, 161895.	2.8	14
2	The effect of TiO2@CoAl-LDH nanosphere on early hydration of cement and its photocatalytic depollution performance under UV–visible light. Construction and Building Materials, 2022, 319, 126227.	3.2	17
3	Influence of liquid-binder ratio on the performance of alkali-activated slag mortar with superabsorbent polymer. Journal of Building Engineering, 2022, 48, 103934.	1.6	5
4	Interaction between cement and asphalt emulsion and its influences on asphalt emulsion demulsification, cement hydration and rheology. Construction and Building Materials, 2022, 329, 127220.	3.2	17
5	Effect of pretreated cow dung fiber on mechanical and shrinkage properties of cementitious composites. Journal of Cleaner Production, 2022, 348, 131374.	4.6	13
6	The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light. Catalysts, 2022, 12, 443.	1.6	11
7	Effect of superabsorbent polymer introduction on properties of alkali-activated slag mortar. Construction and Building Materials, 2022, 340, 127541.	3.2	16
8	Effect of different lithological stone powders on properties of cementitious materials. Journal of Cleaner Production, 2021, 289, 125820.	4.6	15
9	Influence of binary waste mixtures on road performance of asphalt and asphalt mixture. Journal of Cleaner Production, 2021, 298, 126842.	4.6	33
10	Sustainable use of ferronickel slag in cementitious composites and the effect on chloride penetration resistance. Construction and Building Materials, 2020, 240, 117969.	3.2	27
11	Efficiency and durability of g-C3N4-based coatings applied on mortar under peeling and washing trials. Construction and Building Materials, 2020, 234, 117438.	3.2	5
12	New insights into long-term chloride transport in unsaturated cementitious materials: Role of degree of water saturation. Construction and Building Materials, 2020, 238, 117677.	3.2	10
13	Pore size dependent connectivity and ionic transport in saturated cementitious materials. Construction and Building Materials, 2020, 238, 117680.	3.2	31
14	Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials. Construction and Building Materials, 2020, 235, 117449.	3.2	40
15	Dependence of unsaturated chloride diffusion on the pore structure in cementitious materials. Cement and Concrete Research, 2020, 127, 105919.	4.6	35
16	Investigations of Mixing Technique on the Rheological Properties of Self-Compacting Concrete. Applied Sciences (Switzerland), 2020, 10, 5189.	1.3	4
17	A Review on the Pumping Behavior of Modern Concrete. Journal of Advanced Concrete Technology, 2020, 18, 352-363.	0.8	24
18	Investigation of PEG/mixed metal oxides as a new form-stable phase change material for thermoregulation and improved UV ageing resistance of bitumen. RSC Advances, 2020, 10, 44903-44911.	1.7	17

ZHENGXIAN YANG

#	Article	IF	CITATIONS
19	Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light. Construction and Building Materials, 2019, 225, 120-131.	3.2	22
20	Preparation and characterization of PEG/surface-modified layered double hydroxides as a new shape-stabilized phase change material. RSC Advances, 2019, 9, 23435-23443.	1.7	15
21	Steel rebar corrosion in artificial reef concrete with sulphoaluminate cement, sea water and marine sand. Construction and Building Materials, 2019, 227, 116685.	3.2	38
22	Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization–Depressurization Cycling Mercury Intrusion Porosimetry. Materials, 2019, 12, 1454.	1.3	42
23	Microstructure-Based Relative Humidity in Cementitious System Due to Self-Desiccation. Materials, 2019, 12, 1214.	1.3	4
24	Preliminary investigation of artificial reef concrete with sulphoaluminate cement, marine sand and sea water. Construction and Building Materials, 2019, 211, 837-846.	3.2	33
25	Chloride Penetration in Coastal Concrete Structures: Field Investigation and Model Development. Advances in Materials Science and Engineering, 2019, 2019, 1-16.	1.0	3
26	Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, 2019, 213, 659-672.	4.6	94
27	Damage assessment of asphalt concrete with composite additives at the FAM–coarse aggregate interfacial zone. Construction and Building Materials, 2019, 198, 587-596.	3.2	3
28	Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials. Materials, 2019, 12, 39.	1.3	136
29	Recent Advances in Intrinsic Selfâ€Healing Cementitious Materials. Advanced Materials, 2018, 30, e1705679.	11.1	197
30	Laboratory investigation of graphene oxide suspension as a surface sealer for cementitious mortars. Construction and Building Materials, 2018, 162, 65-79.	3.2	14
31	Impact of nanoclay and carbon microfiber in combating the deterioration of asphalt concrete by non-chloride deicers. Construction and Building Materials, 2018, 160, 514-525.	3.2	25
32	Biogenic sulfuric acid corrosion resistance of new artificial reef concrete. Construction and Building Materials, 2018, 158, 33-41.	3.2	35
33	Mechanical behavior of ultra-high performance concrete (UHPC) using recycled fine aggregate cured under different conditions and the mechanism based on integrated microstructural parameters. Construction and Building Materials, 2018, 192, 489-507.	3.2	94
34	Experimental and numerical study of crack behaviour for capsule-based self-healing cementitious materials. Construction and Building Materials, 2017, 156, 219-229.	3.2	26
35	Laboratory Investigation into the Modification of Transport Properties of High-Volume Fly Ash Mortar by Chemical Admixtures. Journal of Materials in Civil Engineering, 2017, 29, 04017184.	1.3	8
36	The effect of two types of modified Mg-Al hydrotalcites on reinforcement corrosion in cement mortar. Cement and Concrete Research, 2017, 100, 186-202.	4.6	36

ZHENGXIAN YANG

#	Article	IF	CITATIONS
37	Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials. Materials, 2016, 9, 1025.	1.3	71
38	Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials. Construction and Building Materials, 2016, 105, 487-495.	3.2	141
39	Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar. Cement and Concrete Composites, 2015, 58, 105-113.	4.6	56
40	Effect on Mechanical Properties and Chloride Penetration Resistance of Modified Hydrotalcite in Cement Mortar. , 2015, , 115-124.		0
41	Synthesis and characterization of modified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution. Cement and Concrete Composites, 2014, 47, 87-93.	4.6	66
42	Modified hydrotalcites as a new emerging class of smart additive of reinforced concrete for anticorrosion applications: A literature review. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 1066-1074.	0.8	57
43	Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications. Construction and Building Materials, 2013, 47, 1436-1443.	3.2	53
44	Transport Properties of Carbon-Nanotube/Cement Composites. Journal of Materials Engineering and Performance, 2013, 22, 184-189.	1.2	120
45	A New Smart Additive of Reinforced Concrete Based on Modified Hydrotalcites: Preparation, Characterization and Anticorrosion Applications. Materials Research Society Symposia Proceedings, 2012, 1488, 103.	0.1	0
46	Longevity of corrosion inhibitors and performance of anti-icing products after pavement application: A case study. Cold Regions Science and Technology, 2012, 83-84, 89-97.	1.6	5
47	Possibilities for improving corrosion protection of reinforced concrete by modified hydrotalcites – a literature review. , 2012, , 95-105.		4
48	A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cement and Concrete Composites, 2011, 33, 506-512.	4.6	260
49	Strength and corrosion properties of Portland cement mortar and concrete with mineral admixtures. Construction and Building Materials, 2011, 25, 3245-3256.	3.2	71
50	Freeze–thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Materials and Structures/Materiaux Et Constructions, 2010, 43, 933-946.	1.3	146
51	Surface-sulfonated polystyrene microspheres improve crack resistance of carbon microfiber-reinforced Portland cement mortar. Journal of Materials Science, 2010, 45, 3497-3505.	1.7	19
52	Laboratory Assessment of a Self-Healing Cementitious Composite. Transportation Research Record, 2010, 2142, 9-17.	1.0	50
53	Corrosion of Deicers to Metals in Transportation Infrastructure: Introduction and Recent Developments. Corrosion Reviews, 2009, 27, 23-52.	1.0	108
54	An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors. Science in China Series D: Earth Sciences, 2009, 52, 52-66.	0.9	28

#	Article	IF	CITATIONS
55	Effect of styrene–butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Construction and Building Materials, 2009, 23, 2283-2290.	3.2	157
56	Feasibility investigation of self-healing cementitious composite using oil core/silica gel shell passive smart microcapsules. Proceedings of SPIE, 2009, , .	0.8	5
57	Deicer Impacts on Pavement Materials: Introduction and Recent Developments. Open Civil Engineering Journal, 2009, 3, 16-27.	0.4	126