
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic Layer Deposition of Crystalline MoS ₂ Thin Films: New Molybdenum Precursor for Lowâ€Temperature Film Growth. Advanced Materials Interfaces, 2017, 4, 1700123.	1.9	98
2	Atomic Layer Deposition of Emerging 2D Semiconductors, HfS ₂ and ZrS ₂ , for Optoelectronics. Chemistry of Materials, 2019, 31, 5713-5724.	3.2	72
3	Atomic layer deposition of Ge2Sb2Te5 thin films. Microelectronic Engineering, 2009, 86, 1946-1949.	1.1	64
4	Atomic Layer Deposition of Rhenium Disulfide. Advanced Materials, 2018, 30, e1703622.	11.1	58
5	Atomic Layer Deposition of Pbl ₂ Thin Films. Chemistry of Materials, 2019, 31, 1101-1109.	3.2	49
6	Thermal diffusivity degradation and point defect density in self-ion implanted tungsten. Acta Materialia, 2020, 193, 270-279.	3.8	47
7	Direct observation of mono-vacancy and self-interstitial recovery in tungsten. APL Materials, 2019, 7, .	2.2	45
8	Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing. Materials Today Chemistry, 2018, 9, 17-27.	1.7	44
9	Atomic Layer Deposition of Antimony and its Compounds Using Dechlorosilylation Reactions of Tris(triethylsilyl)antimony. Chemistry of Materials, 2011, 23, 247-254.	3.2	43
10	Low-Temperature Atomic Layer Deposition of Cobalt Oxide as an Effective Catalyst for Photoelectrochemical Water-Splitting Devices. Chemistry of Materials, 2017, 29, 5796-5805.	3.2	43
11	Atomic Layer Deposition of Photoconductive Cu ₂ 0 Thin Films. ACS Omega, 2019, 4, 11205-11214.	1.6	40
12	Observation of Transient and Asymptotic Driven Structural States of Tungsten Exposed to Radiation. Physical Review Letters, 2020, 125, 225503.	2.9	38
13	A Pyrazolate-Based Metalorganic Tantalum Precursor That Exhibits High Thermal Stability and Its Use in the Atomic Layer Deposition of Ta ₂ O ₅ . Journal of the American Chemical Society, 2007, 129, 12370-12371.	6.6	37
14	Radiation resistance diagnostics of wide-gap optical materials. Optical Materials, 2016, 55, 164-167.	1.7	37
15	Influence of microstructure on temperature-induced ageing mechanisms of different solar absorber coatings. Solar Energy Materials and Solar Cells, 2014, 120, 462-472.	3.0	36
16	Electric and Magnetic Properties of ALD-Grown BiFeO ₃ Films. Journal of Physical Chemistry C, 2016, 120, 7313-7322.	1.5	35
17	Studies on Thermal Atomic Layer Deposition of Silver Thin Films. Chemistry of Materials, 2017, 29, 2040-2045.	3.2	35
18	Thermal Atomic Layer Deposition of Continuous and Highly Conducting Gold Thin Films. Chemistry of Materials, 2017, 29, 6130-6136.	3.2	34

#	Article	IF	CITATIONS
19	Atomic Layer Deposition of AlF ₃ Thin Films Using Halide Precursors. Chemistry of Materials, 2015, 27, 604-611.	3.2	33
20	Rare earth scandate thin films by atomic layer deposition: effect of the rare earth cation size. Journal of Materials Chemistry, 2010, 20, 4207.	6.7	31
21	Nucleation and Conformality of Iridium and Iridium Oxide Thin Films Grown by Atomic Layer Deposition. Langmuir, 2016, 32, 10559-10569.	1.6	31
22	Magnetic Properties of Polycrystalline Bismuth Ferrite Thin Films Grown by Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2014, 5, 4319-4323.	2.1	30
23	Cycloheptatrienyl-Cyclopentadienyl Heteroleptic Precursors for Atomic Layer Deposition of Group 4 Oxide Thin Films. Chemistry of Materials, 2012, 24, 2002-2008.	3.2	27
24	Low-Temperature Atomic Layer Deposition of Low-Resistivity Copper Thin Films Using Cu(dmap) ₂ and Tertiary Butyl Hydrazine. Chemistry of Materials, 2017, 29, 6502-6510.	3.2	27
25	Diamine Adduct of Cobalt(II) Chloride as a Precursor for Atomic Layer Deposition of Stoichiometric Cobalt(II) Oxide and Reduction Thereof to Cobalt Metal Thin Films. Chemistry of Materials, 2018, 30, 3499-3507.	3.2	27
26	Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulses. Journal of Physical Chemistry C, 2016, 120, 15235-15243.	1.5	26
27	Atomic layer deposition and properties of mixed Ta2O5 and ZrO2 films. AIP Advances, 2017, 7, .	0.6	26
28	Tracing grog and pots to reveal Neolithic Corded Ware Culture contacts in the Baltic Sea region (SEM-EDS, PIXE). Journal of Archaeological Science, 2018, 91, 77-91.	1.2	26
29	Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors: Process Development, Film Characterization, and Gas Sensing Properties. Chemistry of Materials, 2018, 30, 8690-8701.	3.2	26
30	Optical characteristics of virgin and proton-irradiated ceramics of magnesium aluminate spinel. Optical Materials, 2019, 96, 109308.	1.7	26
31	Heteroleptic Cyclopentadienyl-Amidinate Precursors for Atomic Layer Deposition (ALD) of Y, Pr, Gd, and Dy Oxide Thin Films. Chemistry of Materials, 2016, 28, 5440-5449.	3.2	25
32	Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes. Journal of Materials Chemistry A, 2019, 7, 3206-3215.	5.2	25
33	Atomic Layer Deposition and Characterization of Bi ₂ Te ₃ Thin Films. Journal of Physical Chemistry A, 2015, 119, 2298-2306.	1.1	24
34	Modified deformation behaviour of self-ion irradiated tungsten: A combined nano-indentation, HR-EBSD and crystal plasticity study. International Journal of Plasticity, 2020, 135, 102817.	4.1	24
35	Effect of interstitial carbon on the evolution of early-stage irradiation damage in equi-atomic FeMnNiCoCr high-entropy alloys. Journal of Applied Physics, 2020, 127, .	1.1	24
36	Influence of temperature-induced copper diffusion on degradation of selective chromium oxy-nitride solar absorber coatings. Solar Energy Materials and Solar Cells, 2016, 145, 323-332.	3.0	23

#	Article	IF	CITATIONS
37	Deposition of impurity metals during campaigns with the JET ITER-like Wall. Nuclear Materials and Energy, 2019, 19, 218-224.	0.6	23
38	Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozone. Thin Solid Films, 2015, 589, 597-604.	0.8	22
39	Inert ambient annealing effect on MANOS capacitor memory characteristics. Nanotechnology, 2015, 26, 134004.	1.3	21
40	Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2018, 57, 14538-14542.	7.2	21
41	Atomic layer deposition of ytterbium oxide using -diketonate and ozone precursors. Applied Surface Science, 2009, 256, 847-851.	3.1	20
42	Nanoscale lattice strains in self-ion implanted tungsten. Acta Materialia, 2020, 195, 219-228.	3.8	20
43	Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy. Acta Materialia, 2021, 215, 117093.	3.8	20
44	Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers. Thin Solid Films, 2016, 611, 78-87.	0.8	19
45	Low-temperature atomic layer deposition of copper(II) oxide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	18
46	Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li–Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 42773-42790.	4.0	18
47	(Et ₃ Si) ₂ Se as a precursor for atomic layer deposition: growth analysis of thermoelectric Bi ₂ Se ₃ . Journal of Materials Chemistry C, 2015, 3, 4820-4828.	2.7	16
48	Characterising Ion-Irradiated FeCr: Hardness, Thermal Diffusivity and Lattice Strain. Acta Materialia, 2020, 201, 535-546.	3.8	16
49	Atomic Layer Deposition of PbS Thin Films at Low Temperatures. Chemistry of Materials, 2020, 32, 8216-8228.	3.2	16
50	Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten. Journal of Nuclear Materials, 2022, 558, 153373.	1.3	16
51	Preparation and bioactive properties of nanocrystalline hydroxyapatite thin films obtained by conversion of atomic layer deposited calcium carbonate. Biointerphases, 2014, 9, 031008.	0.6	15
52	Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	15
53	Atomic Layer Deposition of Intermetallic Co ₃ Sn ₂ and Ni ₃ Sn ₂ Thin Films. Advanced Materials Interfaces, 2019, 6, 1801291.	1.9	15
54	Hydrogen isotope exchange in tungsten during annealing in hydrogen atmosphere. Nuclear Fusion, 2019, 59, 026016.	1.6	15

#	Article	IF	CITATIONS
55	Potential gold(I) precursors evaluated for atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	14
56	Instability of the Sb vacancy in GaSb. Physical Review B, 2017, 95, .	1.1	14
57	Preparation of Lithium Containing Oxides by the Solid State Reaction of Atomic Layer Deposited Thin Films. Chemistry of Materials, 2017, 29, 998-1005.	3.2	12
58	Atomic layer deposition of aluminum oxide on modified steel substrates. Surface and Coatings Technology, 2016, 304, 1-8.	2.2	11
59	Intercalation of Lithium Ions from Gaseous Precursors into β-MnO2 Thin Films Deposited by Atomic Layer Deposition. Journal of Physical Chemistry C, 2019, 123, 15802-15814.	1.5	11
60	Comparative study of deuterium retention in irradiated Eurofer and Fe–Cr from a new ion implantation materials facility. Nuclear Fusion, 2020, 60, 016024.	1.6	11
61	Atomic layer deposition of lanthanum oxide with heteroleptic cyclopentadienyl-amidinate lanthanum precursor - Effect of the oxygen source on the film growth and properties. Thin Solid Films, 2018, 660, 199-206.	0.8	10
62	Effect of Au ion beam on structural, surface, optical and electrical properties of ZnO thin films prepared by RF sputtering. Ceramics International, 2018, 44, 16464-16469.	2.3	10
63	Two-step implantation of gold into graphene. 2D Materials, 2022, 9, 025011.	2.0	10
64	Atomic Layer Deposition of TiO ₂ and ZrO ₂ Thin Films Using Heteroleptic Guanidinate Precursors. Chemical Vapor Deposition, 2014, 20, 209-216.	1.4	9
65	As2S3 thin films deposited by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 01B114.	0.9	9
66	(Invited) Photo-Assisted ALD: Process Development and Application Perspectives. ECS Transactions, 2017, 80, 49-60.	0.3	9
67	Observed and Modeled Black Carbon Deposition and Sources in the Western Russian Arctic 1800–2014. Environmental Science & Technology, 2021, 55, 4368-4377.	4.6	9
68	High-fidelity patterning of AlN and ScAlN thin films with wet chemical etching. Materialia, 2022, 22, 101403.	1.3	9
69	Laser induced breakdown spectroscopy for hydrogen detection in molybdenum at atmospheric pressure mixtures of argon and nitrogen. Fusion Engineering and Design, 2022, 179, 113131.	1.0	9
70	Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten probed by insitu transient grating spectroscopy. Acta Materialia, 2022, 232, 117926.	3.8	8
71	External beam IBA set-up with large-area thin Si3N4 window. Nuclear Instruments & Methods in Physics Research B, 2016, 380, 11-14.	0.6	7
72	Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon. Nuclear Instruments & Methods in Physics Research B, 2016, 378, 25-30.	0.6	7

#	Article	IF	CITATIONS
73	Nickel Germanide Thin Films by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 5314-5319.	3.2	7
74	Comparative study on the use of novel heteroleptic cyclopentadienyl-based zirconium precursors with H2O and O3 for atomic layer deposition of ZrO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	7
75	Photoassisted atomic layer deposition of oxides employing alkoxides as single-source precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	7
76	Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	7
77	Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method. Nanotechnology, 2015, 26, 265304.	1.3	6
78	Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl ₂ (TMPDA) and Tertâ€Butylhydrazine as Precursors. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900058.	0.8	6
79	lonic conductivity in LixTaOy thin films grown by atomic layer deposition. Electrochimica Acta, 2020, 361, 137019.	2.6	6
80	Highly Material Selective and Selfâ€Aligned Photoâ€assisted Atomic Layer Deposition of Copper on Oxide Materials. Advanced Materials Interfaces, 2021, 8, 2100014.	1.9	6
81	VOLUMES OF WORTH—DELIMITING THE SAMPLE SIZE FOR RADIOCARBON DATING OF PARCHMENT. Radiocarbon, 2021, 63, 105-120.	0.8	6
82	Stopping cross sections of atomic layer deposited Al2O3 and Ta2O5 and of Si3N4 for 12C, 16O, 35Cl, 79Br and 127I ions. Nuclear Instruments & Methods in Physics Research B, 2013, 300, 1-5.	0.6	5
83	Studies on Li3AlF6 thin film deposition utilizing conversion reactions of thin films. Thin Solid Films, 2017, 636, 26-33.	0.8	5
84	Studies on solid state reactions of atomic layer deposited thin films of lithium carbonate with hafnia and zirconia. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	5
85	Toward epitaxial ternary oxide multilayer device stacks by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	5
86	Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane. Nanotechnology, 2020, 31, 195713.	1.3	5
87	Atomic layer deposition of TbF3 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	5
88	New perspectives on collision cascade damage in self-ion irradiated tungsten from HR-EBSD and ECCI. Journal of Nuclear Materials, 2021, 554, 153074.	1.3	5
89	Atomic Layer Deposition of Zirconium Dioxide from Zirconium Tetraiodide and Ozone. ECS Journal of Solid State Science and Technology, 2018, 7, P1-P8.	0.9	4
90	Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)2(THF) and H2O. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	4

KENICHIRO MIZOHATA

#	Article	IF	CITATIONS
91	Atomic layer deposition of GdF3 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	4
92	A low-temperature thermal ALD process for nickel utilizing dichlorobis(triethylphosphine)nickel(<scp>ii</scp>) and 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine. Dalton Transactions, 2022, 51, 10898-10908.	1.6	4
93	Spin-glass magnetism of surface rich Au cluster film. Applied Physics Letters, 2011, 99, .	1.5	3
94	Charge and current hysteresis in dysprosium-doped zirconium oxide thin films. Microelectronic Engineering, 2015, 147, 55-58.	1.1	3
95	Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process. Journal of Materials Chemistry C, 2016, 4, 449-454.	2.7	3
96	Atomic Layer Deposition of Zinc Glutarate Thin Films. Advanced Materials Interfaces, 2017, 4, 1700512.	1.9	3
97	Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Deposition. Angewandte Chemie, 2018, 130, 14746-14750.	1.6	3
98	<i>In-situ</i> plasma treatment of Cu surfaces for reducing the generation of vacuum arc breakdowns. Journal of Applied Physics, 2021, 130, .	1.1	3
99	From lakes to ratios: 14C measurement process of the Finnish tree-ring research consortium. Nuclear Instruments & Methods in Physics Research B, 2022, 519, 37-45.	0.6	2
100	Deformation behaviour of ion-irradiated FeCr: A nanoindentation study. Journal of Materials Research, 2022, 37, 2045-2060.	1.2	2
101	MANOS performance dependence on ALD Al2O3 oxidation source. Microelectronic Engineering, 2016, 159, 127-131.	1.1	1
102	Charge state optimisation for beryllium accelerator mass spectrometry. Nuclear Instruments & Methods in Physics Research B, 2020, 469, 33-36.	0.6	1
103	Hydrogen isotope exchange mechanism in tungsten studied by ERDA. Physica Scripta, 2020, T171, 014056.	1.2	1
104	Atomic Layer Deposition of GdF3 Thin Films. ECS Meeting Abstracts, 2021, MA2021-02, 878-878.	0.0	1
105	Molecular Layer Deposition of Thermally Stable Polybenzimidazoleâ€Like Thin Films and Nanostructures. Advanced Materials Interfaces, 2022, 9, .	1.9	1
106	Electrical characterization of MIS capacitors based on Dy <inf>2</inf> 0 <inf>3</inf> -doped ZrO <inf>2</inf> dielectrics. , 2015, , .		0
107	Highly conductive and stable Co9S8 thin films by atomic layer deposition: from process development and film characterization to selective and epitaxial growth. Dalton Transactions, 2021, 50, 13264-13275.	1.6	0

Radiation Testing of the XFM X-Ray Detector for the Lagrange Mission. , 2020, , .

0