
Craig H Bassing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7996183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mechanism and Regulation of Chromosomal V(D)J Recombination. Cell, 2002, 109, S45-S55.	28.9	787
2	Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8173-8178.	7.1	492
3	Histone H2AX. Cell, 2003, 114, 359-370.	28.9	464
4	ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature, 2006, 442, 466-470.	27.8	366
5	The cellular response to general and programmed DNA double strand breaks. DNA Repair, 2004, 3, 781-796.	2.8	279
6	H2AX Prevents DNA Breaks from Progressing to Chromosome Breaks and Translocations. Molecular Cell, 2006, 21, 201-214.	9.7	258
7	HIF-1: A Target For Cancer, Ischemia and Inflammation—Too Good to be True?. Cell Cycle, 2004, 3, 149-150.	2.6	231
8	Control of Sister Chromatid Recombination by Histone H2AX. Molecular Cell, 2004, 16, 1017-1025.	9.7	191
9	Formation of Dynamic Î ³ -H2AX Domains along Broken DNA Strands Is Distinctly Regulated by ATM and MDC1 and Dependent upon H2AX Densities in Chromatin. Molecular Cell, 2009, 34, 298-310.	9.7	169
10	Recombination signal sequences restrict chromosomal V(D)J recombination beyond the 12/23 rule. Nature, 2000, 405, 583-586.	27.8	158
11	H2AX May Function as an Anchor to Hold Broken Chromosomal DNA Ends in Close Proximity. Cell Cycle, 2004, 3, 147-148.	2.6	151
12	DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature, 2008, 456, 819-823.	27.8	137
13	H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature, 2011, 469, 245-249.	27.8	131
14	RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology, 2009, 10, 655-664.	14.5	130
15	Antigen Receptor Allelic Exclusion: An Update and Reappraisal. Journal of Immunology, 2010, 185, 3801-3808.	0.8	119
16	Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9302-9306.	7.1	105
17	DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nature Communications, 2020, 11, 3158.	12.8	97
18	ATM-deficient thymic lymphoma is associated with aberrant <i>tcrd</i> rearrangement and gene amplification. Journal of Experimental Medicine, 2010, 207, 1369-1380.	8.5	74

#	Article	IF	CITATIONS
19	Impaired V(D)J Recombination and Lymphocyte Development in Core RAG1-expressing Mice. Journal of Experimental Medicine, 2003, 198, 1439-1450.	8.5	70
20	Genotoxic Stress-Induced Cyclin D1 Phosphorylation and Proteolysis Are Required for Genomic Stability. Molecular and Cellular Biology, 2008, 28, 7245-7258.	2.3	64
21	Extrachromosomal Recombination Substrates Recapitulate beyond 12/23 Restricted V(D)J Recombination in Nonlymphoid Cells. Immunity, 2003, 18, 65-74.	14.3	62
22	Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2022-2027.	7.1	58
23	Defects in coding joint formation in vivo in developing ATM-deficient B and T lymphocytes. Journal of Experimental Medicine, 2007, 204, 1371-1381.	8.5	57
24	Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. Journal of Experimental Medicine, 2009, 206, 2625-2639.	8.5	55
25	Lineage-specific compaction of <i>Tcrb</i> requires a chromatin barrier to protect the function of a long-range tethering element. Journal of Experimental Medicine, 2015, 212, 107-120.	8.5	54
26	Chromatin dynamics and locus accessibility in the immune system. Nature Immunology, 2003, 4, 603-606.	14.5	50
27	Dramatically Increased Rearrangement and Peripheral Representation of Vβ14 Driven by the 3′Dβ1 Recombination Signal Sequence. Immunity, 2003, 18, 75-85.	14.3	47
28	RAG-mediated DNA double-strand breaks activate a cell type–specific checkpoint to inhibit pre–B cell receptor signals. Journal of Experimental Medicine, 2016, 213, 209-223.	8.5	47
29	Aberrant V(D)J Recombination in Ataxia Telangiectasia Mutated-Deficient Lymphocytes Is Dependent on Nonhomologous DNA End Joining. Journal of Immunology, 2008, 181, 2620-2625.	0.8	42
30	The Ataxia Telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary <i>Vκ</i> -to- <i>JIº</i> rearrangements. Journal of Experimental Medicine, 2013, 210, 233-239.	8.5	42
31	Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in <i>cis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18339-18344.	7.1	37
32	T cell receptor (TCR) Â/Â locus enhancer identity and position are critical for the assembly of TCR Â and Â variable region genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2598-2603.	7.1	31
33	Peripheral subnuclear positioning suppresses <i>Tcrb</i> recombination and segregates <i>Tcrb</i> alleles from RAG2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4628-37.	7.1	27
34	Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Advances in Immunology, 2015, 128, 273-306.	2.2	27
35	V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends in Genetics, 2017, 33, 479-489.	6.7	25
36	B Cell–Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell–Dependent Immune Response In Vivo. Journal of Immunology, 2015, 195, 3449-3462.	0.8	24

#	Article	IF	CITATIONS
37	Immature Lymphocytes Inhibit <i>Rag1</i> and <i>Rag2</i> Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. Journal of Immunology, 2017, 198, 2943-2956.	0.8	24
38	Posttranscriptional Silencing of VβDJβCβ Genes Contributes to TCRβ Allelic Exclusion in Mammalian Lymphocytes. Journal of Immunology, 2010, 185, 1055-1062.	0.8	22
39	The Ataxia Telangiectasia Mutated and Cyclin D3 Proteins Cooperate To Help Enforce TCRÎ ² and IgH Allelic Exclusion. Journal of Immunology, 2014, 193, 2881-2890.	0.8	22
40	Productive Coupling of Accessible Vβ14 Segments and DJβ Complexes Determines the Frequency of Vβ14 Rearrangement. Journal of Immunology, 2008, 180, 2339-2346.	0.8	20
41	TCRβ Feedback Signals Inhibit the Coupling of Recombinationally Accessible Vβ14 Segments with DJβ Complexes. Journal of Immunology, 2010, 184, 1369-1378.	0.8	19
42	Repair of Chromosomal RAG-Mediated DNA Breaks by Mutant RAG Proteins Lacking Phosphatidylinositol 3-Like Kinase Consensus Phosphorylation Sites. Journal of Immunology, 2011, 187, 1826-1834.	0.8	18
43	Lymphocyte lineage-specific and developmental stage specific mechanisms suppress cyclin D3 expression in response to DNA double strand breaks. Cell Cycle, 2016, 15, 2882-2894.	2.6	18
44	Restriction of endogenous T cell antigen receptor beta rearrangements to Vbeta14 through selective recombination signal sequence modifications. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4002-4007.	7.1	17
45	Position-Dependent Silencing of Germline Vβ Segments on TCRβ Alleles Containing Preassembled VβDJβCβ1 Genes. Journal of Immunology, 2010, 185, 3564-3573.	0.8	17
46	Aberrant V(D)J recombination is not required for rapid development of H2ax/p53-deficient thymic lymphomas with clonal translocations. Blood, 2008, 111, 2163-2169.	1.4	16
47	Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion. Journal of Experimental Medicine, 2020, 217, .	8.5	15
48	Inefficient V(D)J recombination underlies monogenic T cell receptor \hat{I}^2 expression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18172-18174.	7.1	13
49	The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	13
50	Vβ cluster sequences reduce the frequency of primary Vβ2 and Vβ14 rearrangements. European Journal of Immunology, 2008, 38, 2564-2572.	2.9	12
51	Noncore RAG1 Regions Promote Vβ Rearrangements and αβ T Cell Development by Overcoming Inherent Inefficiency of Vβ Recombination Signal Sequences. Journal of Immunology, 2014, 192, 1609-1619.	0.8	12
52	Genomic Alterations of Non-Coding Regions Underlie Human Cancer: Lessons from T-ALL. Trends in Molecular Medicine, 2016, 22, 1035-1046.	6.7	12
53	Assembled DJβ Complexes Influence TCRβ Chain Selection and Peripheral Vβ Repertoire. Journal of Immunology, 2009, 182, 5586-5595.	0.8	11
54	The microRNA Biogenesis Machinery Modulates Lineage Commitment during αβ T Cell Development. Journal of Immunology, 2014, 193, 4032-4042.	0.8	11

#	Article	IF	CITATIONS
55	Domain-Specific and Stage-Intrinsic Changes in <i>Tcrb</i> Conformation during Thymocyte Development. Journal of Immunology, 2015, 195, 1262-1272.	0.8	11
56	Redundant and Nonredundant Functions of ATM and H2AX in αβ T-Lineage Lymphocytes. Journal of Immunology, 2012, 189, 1372-1379.	0.8	10
57	Somatic inactivation of Tp53 in hematopoietic stem cells or thymocytes predisposes mice to thymic lymphomas with clonal translocations. Cell Cycle, 2013, 12, 3307-3316.	2.6	10
58	Two Successive Inversional Vβ Rearrangements on a Single <i>Tcrb</i> Allele Can Contribute to the TCRβ Repertoire. Journal of Immunology, 2020, 204, 78-86.	0.8	10
59	The sticky business of histone H2AX in V(D)J recombination, maintenance of genomic stability, and suppression of lymphoma. Immunologic Research, 2008, 42, 29-40.	2.9	9
60	<i>Tcrδ</i> translocations that delete the <i>Bcl11b</i> haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle, 2014, 13, 3076-3082.	2.6	9
61	Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Molecular Cancer Research, 2016, 14, 185-195.	3.4	9
62	Chipping away at Î ³ -H2AX foci. Cell Cycle, 2009, 8, 3285-3290.	2.6	8
63	Cellular context-dependent effects of H2ax and p53 deletion on the development of thymic lymphoma. Blood, 2011, 117, 175-185.	1.4	8
64	Differential Regulation of Proximal and Distal Vβ Segments Upstream of a Functional VDJβ1 Rearrangement upon β-Selection. Journal of Immunology, 2011, 187, 3277-3285.	0.8	8
65	Deciphering the DNA damage histone code. Cell Cycle, 2010, 9, 3842-3847.	2.6	6
66	Genome Topology Control of Antigen Receptor Gene Assembly. Journal of Immunology, 2020, 204, 2617-2626.	0.8	5
67	Flip the switch: BTG2–PRMT1 protein complexes antagonize pre-B-cell proliferation to promote B-cell development. Cellular and Molecular Immunology, 2018, 15, 808-811.	10.5	4
68	Nemo-Dependent, ATM-Mediated Signals from RAG DNA Breaks at <i>Igk</i> Feedback Inhibit <i>V κ</i> Recombination to Enforce Igκ Allelic Exclusion. Journal of Immunology, 2022, 208, 371-383.	0.8	4
69	Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia. Cell Cycle, 2015, 14, 388-398.	2.6	3
70	Foxos around make B cells tolerable. Nature Immunology, 2008, 9, 586-588.	14.5	2
71	Activating Notch1 Mutations in Mouse Models of T-ALL Blood, 2005, 106, 2609-2609.	1.4	2
72	Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. Journal of Immunology, 2022, 208, 2583-2592.	0.8	2

#	Article	IF	CITATIONS
73	V(D)J recombination causes dangerous chromosome liaisons in developing thymocytes. Cell Cycle, 2009, 8, 2484-2488.	2.6	1
74	The ESCRT protein CHMP5 escorts $\hat{I}\pm\hat{I}^2$ T cells through positive selection. Cellular and Molecular Immunology, 2018, 15, 654-656.	10.5	1
75	From RAG2 to T Cell Riches and Future Fortunes. Journal of Immunology, 2019, 202, 1315-1316.	0.8	1
76	Monogenic TCRβ Assembly and Expression Are Paramount for Uniform Antigen Receptor Specificity of Individual αβ T Lymphocytes. Journal of Immunology, 2022, 209, 93-98.	0.8	1
77	To κ+ B or not to κ+ B. Nature Immunology, 2015, 16, 1007-1009.	14.5	0
78	Deletion of Atm in the Hematopoetic Stem Cell As a Mouse Model for Human T Cell Acute Lymphoblastic Leukemia/Lymphoma Blood, 2012, 120, 2418-2418.	1.4	0
79	A Spontaneous RAG1 Nonsense Mutation Unveils Naturally Occurring N-Terminal Truncated RAG1 Isoforms. ImmunoHorizons, 2020, 4, 119-128.	1.8	0