Peter H L Krijger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7995823/publications.pdf

Version: 2024-02-01

33 papers 3,557 citations

304368

22

h-index

395343 33 g-index

36 all docs 36 docs citations

36 times ranked 5720 citing authors

#	Article	IF	CITATIONS
1	Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Research, 2022, 50, 3190-3202.	6.5	5
2	Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nature Structural and Molecular Biology, 2022, 29, 563-574.	3.6	49
3	Genetic Dissection of a Super Enhancer Controlling the <i>Nppa-Nppb</i> Cluster in the Heart. Circulation Research, 2021, 128, 115-129.	2.0	32
4	Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing. Nature Communications, 2021, 12, 3361.	5.8	19
5	Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Molecular Cell, 2021, 81, 3082-3095.e6.	4.5	29
6	A public–private partnership model for COVID-19 diagnostics. Nature Biotechnology, 2021, 39, 1182-1184.	9.4	4
7	4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis. Methods, 2020, 170, 17-32.	1.9	107
8	Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nature Protocols, 2020, 15, 364-397.	5 . 5	25
9	The Ig heavy chain protein but not its message controls early B cell development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31343-31352.	3.3	2
10	YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis InÂVivo. Developmental Cell, 2019, 48, 765-779.e7.	3.1	171
11	Enhancer hubs and loop collisions identified from single-allele topologies. Nature Genetics, 2018, 50, 1151-1160.	9.4	189
12	The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell, 2017, 169, 693-707.e14.	13.5	636
13	Can We Just Say: Transcription Second?. Cell, 2017, 169, 184-185.	13.5	10
14	Regulation of disease-associated gene expression in the 3D genome. Nature Reviews Molecular Cell Biology, 2016, 17, 771-782.	16.1	294
15	Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Molecular Cell, 2016, 61, 461-473.	4.5	7 3
16	Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 597-610.	5.2	187
17	Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. ELife, 2016, 5, .	2.8	115
18	CTCF Binding Polarity Determines Chromatin Looping. Molecular Cell, 2015, 60, 676-684.	4. 5	537

#	Article	IF	CITATIONS
19	Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nature Biotechnology, 2014, 32, 1019-1025.	9.4	231
20	Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway. European Journal of Immunology, 2013, 43, 2765-2770.	1.6	36
21	The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 2013, 501, 227-231.	13.7	236
22	Identical cells with different 3D genomes; cause and consequences?. Current Opinion in Genetics and Development, 2013, 23, 191-196.	1.5	42
23	Lysine Residue 185 of Rad1 Is a Topological but Not a Functional Counterpart of Lysine Residue 164 of PCNA. PLoS ONE, 2011, 6, e16669.	1.1	3
24	HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase. DNA Repair, 2011, 10, 438-444.	1.3	53
25	PCNA ubiquitination-independent activation of polymerase $\hat{\bf l}\cdot$ during somatic hypermutation and DNA damage tolerance. DNA Repair, 2011, 10, 1051-1059.	1.3	43
26	PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells. PLoS Genetics, 2011, 7, e1002262.	1.5	113
27	The Fanconi Anemia Core Complex Is Dispensable during Somatic Hypermutation and Class Switch Recombination. PLoS ONE, 2010, 5, e15236.	1.1	4
28	Error-Prone and Error-Free Resolution of AID Lesions in SHM. Modecular Medicine and Medicinal, 2010, , 97-126.	0.4	1
29	Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigen K164R mutant mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 621-629.	1.8	11
30	Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation. Journal of Experimental Medicine, 2009, 206, 2603-2611.	4.2	52
31	Analysis of somatic hypermutation in X-linked hyper-lgM syndrome shows specific deficiencies in mutational targeting. Blood, 2009, 113, 3706-3715.	0.6	60
32	Mice deficient for CD137 ligand are predisposed to develop germinal center–derived B-cell lymphoma. Blood, 2009, 114, 2280-2289.	0.6	35
33	A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. Journal of Experimental Medicine, 2007, 204, 1989-1998.	4.2	144