Yuanyuan Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7995402/publications.pdf

Version: 2024-02-01

120	3,861	33	56
papers	citations	h-index	g-index
124	124	124	4127
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assessment of microbial α-diversity in one meter squared topsoil. Soil Ecology Letters, 2022, 4, 224-236.	2.4	10
2	Investigation of indole biodegradation by Cupriavidus sp. strain IDO with emphases on downstream biotransformation and indigo production. Environmental Science and Pollution Research, 2022, 29, 8369-8381.	2.7	6
3	Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. Environmental Research, 2022, 204, 112143.	3.7	26
4	Selenium nanoparticles with photocatalytic properties synthesized by residual activated sludge. Science of the Total Environment, 2022, 809, 151163.	3.9	7
5	Performance and bacterial community profiles of sequencing batch reactors during long-term exposure to polyethylene terephthalate and polyethylene microplastics. Bioresource Technology, 2022, 347, 126393.	4.8	7
6	Indole metabolism by phenol-stimulated activated sludges: Performance, microbial communities and network analysis. Environmental Research, 2022, 207, 112660.	3.7	10
7	Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. Environmental Science and Pollution Research, 2022, 29, 61512-61521.	2.7	2
8	Succession of function, assembly, and interaction of microbial community in sequencing biofilm batch reactors under selenite stress. Environmental Research, 2022, 212, 113605.	3.7	6
9	Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal. Journal of Environmental Sciences, 2021, 101, 373-381.	3.2	46
10	Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environmental Research, 2021, 194, 110630.	3.7	62
11	Biogenic fenton-like reaction involvement in aerobic degradation of C60 by Labrys sp. WJW. Environmental Pollution, 2021, 272, 115300.	3.7	6
12	Bioremediation of petroleum hydrocarbons by alkali–saltâ€ŧolerant microbial consortia and their community profiles. Journal of Chemical Technology and Biotechnology, 2021, 96, 809-817.	1.6	14
13	Diversity and structure of soil bacterial community in intertidal zone of Daliao River estuary, Northeast China. Marine Pollution Bulletin, 2021, 163, 111965.	2.3	9
14	Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. Science of the Total Environment, 2021, 767, 144966.	3.9	14
15	Genetic Basis of Chromate Adaptation and the Role of the Pre-existing Genetic Divergence during an Experimental Evolution Study with Desulfovibrio vulgaris Populations. MSystems, 2021, 6, e0049321.	1.7	O
16	Fenton-like reaction driving the degradation and uptake of multi-walled carbon nanotubes mediated by bacterium. Chemosphere, 2021, 275, 129888.	4.2	5
17	Rod-shaped gold nanoparticles biosynthesized using Pb2+-induced fungus Aspergillus sp. WL-Au. Bioprocess and Biosystems Engineering, 2020, 43, 123-131.	1.7	10
18	Exploring the accuracy of ampliconâ€based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources, 2020, 20, 170-184.	2.2	49

#	Article	IF	CITATIONS
19	Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems. Environmental Research, 2020, 182, 109123.	3.7	21
20	Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Materials Chemistry and Physics, 2020, 246, 122583.	2.0	32
21	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie - International Edition, 2020, 59, 22947-22951.	7.2	10
22	Biosynthesis and characterization of lead selenide semiconductor nanoparticles (PbSe NPs) and its antioxidant and photocatalytic activity. Arabian Journal of Chemistry, 2020, 13, 8411-8423.	2.3	20
23	Seasonal variations of soil bacterial communities in Suaeda wetland of Shuangtaizi River estuary, Northeast China. Journal of Environmental Sciences, 2020, 97, 45-53.	3.2	24
24	Bacteria mediated Fenton-like reaction drives the biotransformation of carbon nanomaterials. Science of the Total Environment, 2020, 746, 141020.	3.9	17
25	Effects of graphene oxide on PCR amplification for microbial community survey. BMC Microbiology, 2020, 20, 278.	1.3	4
26	Colorimetric detection of Hg2+ using gold nanoparticles synthesized by Trichosporon montevideense WIN. Biotechnology Letters, 2020, 42, 1691-1697.	1.1	4
27	Comparative characterization and functional genomic analysis of two Comamonas sp. strains for biodegradation of quinoline. Journal of Chemical Technology and Biotechnology, 2020, 95, 2017-2026.	1.6	13
28	Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. Environmental Research, 2020, 183, 109145.	3.7	14
29	Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. Environmental Research, 2020, 184, 109392.	3.7	24
30	Surface water extracts impair gene profiles and differentiation in human mesenchymal stem cells. Environment International, 2019, 132, 104823.	4.8	2
31	Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production. Bioprocess and Biosystems Engineering, 2019, 42, 1963-1971.	1.7	16
32	Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi River Estuary, Northeast China. Marine Pollution Bulletin, 2019, 140, 171-178.	2.3	31
33	Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 2019, 9, 221.	1.1	62
34	Identification and functional study of an iif2 gene cluster for indole degradation in Burkholderia sp. IDO3. International Biodeterioration and Biodegradation, 2019, 142, 36-42.	1.9	7
35	Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 9-16.	2.3	87
36	Characterization and functional gene analysis of a newly isolated indole-degrading bacterium Burkholderia sp. IDO3. Journal of Hazardous Materials, 2019, 367, 144-151.	6.5	45

#	Article	IF	Citations
37	Biosynthesis of gold nanoparticles using fungus <i>Trichoderma</i> sp. WLâ€Go and their catalysis in degradation of aromatic pollutants. IET Nanobiotechnology, 2019, 13, 12-17.	1.9	27
38	Deterministic Assembly and Diversity Gradient Altered the Biofilm Community Performances of Bioreactors. Environmental Science & Environmental Science	4.6	109
39	Biodegradation characteristics and genomic functional analysis of indoleâ€degrading bacterial strain <i>Acinetobacter</i> sp. JW. Journal of Chemical Technology and Biotechnology, 2019, 94, 1114-1122.	1.6	16
40	Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole. Applied Biochemistry and Biotechnology, 2019, 187, 1437-1447.	1.4	13
41	Comparison of gold nanoparticles biosynthesized by cell-free extracts of Labrys, Trichosporon montevideense, and Aspergillus. Environmental Science and Pollution Research, 2018, 25, 13626-13632.	2.7	8
42	Bioremediation of nitrogenâ€containing organic pollutants using phenolâ€stimulated activated sludge: performance and microbial community analysis. Journal of Chemical Technology and Biotechnology, 2018, 93, 3199-3207.	1.6	20
43	A novel environmental fate of graphene oxide: Biodegradation by a bacterium Labrys sp. WJW to support growth. Water Research, 2018, 143, 260-269.	5.3	35
44	Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess and Biosystems Engineering, 2018, 41, 359-367.	1.7	46
45	Biodegradation and Biotransformation of Indole: Advances and Perspectives. Frontiers in Microbiology, 2018, 9, 2625.	1.5	104
46	Transcriptomic Profiles in Zebrafish Liver Permit the Discrimination of Surface Water with Pollution Gradient and Different Discharges. International Journal of Environmental Research and Public Health, 2018, 15, 1648.	1.2	9
47	Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 133-141.	1.3	66
48	Unveiling the biotransformation mechanism of indole in a <i>Cupriavidus</i> sp. strain. Molecular Microbiology, 2017, 106, 905-918.	1.2	39
49	Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME Journal, 2017, 11, 2874-2878.	4.4	70
50	Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environmental Science and Pollution Research, 2017, 24, 21649-21659.	2.7	39
51	Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports, 2017, 7, 4837.	1.6	131
52	Biosynthesis of gold nanoparticles by Trichoderma sp. WL-Go for azo dyes decolorization. Journal of Environmental Sciences, 2017, 56, 79-86.	3.2	40
53	Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. Journal of Hazardous Materials, 2017, 321, 299-306.	6.5	145
54	Colorimetric response of biogenetic gold nanoparticles to mercury (II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 360-365.	2.3	18

#	Article	IF	CITATIONS
55	Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 2016, 104, 1-10.	5.3	177
56	Green synthesis of gold nanoparticles by a newly isolated strain Trichosporon montevideense for catalytic hydrogenation of nitroaromatics. Biotechnology Letters, 2016, 38, 1503-1508.	1.1	33
57	Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems. Bioresource Technology, 2016, 211, 209-215.	4.8	33
58	Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 280-285.	2.3	130
59	Concentration-dependent effects of carbon nanotubes on growth and biphenyl degradation of Dyella ginsengisoli LA-4. Environmental Science and Pollution Research, 2016, 23, 2864-2872.	2.7	15
60	Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems. Scientific Reports, 2015, 5, 17674.	1.6	25
61	Biodegradation of indole by a newly isolated Cupriavidus sp. SHE. Journal of Environmental Sciences, 2015, 34, 126-132.	3.2	28
62	Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications. Genome Announcements, 2015, 3, .	0.8	11
63	Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 2015, 179, 436-443.	4.8	348
64	Biotransformation of Indole and Its Derivatives by a Newly Isolated Enterobacter sp. M9Z. Applied Biochemistry and Biotechnology, 2015, 175, 3468-3478.	1.4	3
65	Responses of Microbial Communities to Single-Walled Carbon Nanotubes in Phenol Wastewater Treatment Systems. Environmental Science & Environmental Sci	4.6	81
66	Characterization of a novel cometabolic degradation carbazole pathway by a phenol-cultivated Arthrobacter sp. W1. Bioresource Technology, 2015, 193, 281-287.	4.8	17
67	Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter. Water Science and Technology, 2015, 71, 1235-1240.	1.2	7
68	Difunctional biogenic Au nanoparticles for colorimetric detection and removal of Hg ²⁺ . RSC Advances, 2015, 5, 42931-42934.	1.7	6
69	Illumina MiSeq Sequencing Reveals Diverse Microbial Communities of Activated Sludge Systems Stimulated by Different Aromatics for Indigo Biosynthesis from Indole. PLoS ONE, 2015, 10, e0125732.	1.1	41
70	Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater. Bioresource Technology, 2015, 190, 159-166.	4.8	91
71	Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2015, 9, 2360-2372.	4.4	24
72	Genome Sequence of an Indigoid-Producing Strain, Pseudomonas sp. PI1. Genome Announcements, 2015, 3, .	0.8	0

#	Article	IF	CITATIONS
73	Genome Sequence of a Versatile Aromatic Hydrocarbon-Degrading Bacterium, Arthrobacter sp. W1. Genome Announcements, 2015, 3, .	0.8	4
74	Biosynthesis of 1,2-dihydroxydibenzofuran by magnetically immobilized cells of Escherichia coli expressing phenol hydroxylase in liquid–liquid biphasic systems. Bioresource Technology, 2015, 197, 72-78.	4.8	4
75	Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. PLoS ONE, 2015, 10, e0138455.	1.1	7
76	Multistep conversion of cresols by phenol hydroxylase and 2,3-dihydroxy-biphenyl 1,2-dioxygenase. Frontiers of Environmental Science and Engineering, 2014, 8, 539-546.	3.3	1
77	Production of Indirubin from Tryptophan by Recombinant Escherichia coli Containing Naphthalene Dioxygenase Genes from Comamonas sp. MQ. Applied Biochemistry and Biotechnology, 2014, 172, 3194-3206.	1.4	19
78	Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix. Colloids and Surfaces B: Biointerfaces, 2014, 116, 365-371.	2.5	17
79	Catalytic transformation of HODAs using an efficient meta-cleavage product hydrolase-spore surface display system. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 204-210.	1.8	7
80	Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences, 2014, 26, 1717-1724.	3.2	107
81	Catalytic properties of 2,3-dihydroxybiphenyl 1,2-dioxygenase from Dyella Ginsengisoli LA-4 immobilized on mesoporous silica SBA-15. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 136-142.	1.8	9
82	Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1. Bioresource Technology, 2014, 164, 28-33.	4.8	28
83	Bioremediation of coking wastewater containing carbazole, dibenzofuran and dibenzothiphene by immobilized naphthalene-cultivated Arthrobacter sp. $W1$ in magnetic gellan gum. Bioresource Technology, 2014, 166, 79-86.	4.8	63
84	Mineralization and Kinetics of Reactive Brilliant Red X-3B by a Combined Anaerobic–Aerobic Bioprocess Inoculated with the Coculture of Fungus and Bacterium. Applied Biochemistry and Biotechnology, 2014, 172, 1106-1120.	1.4	8
85	Biotransformation of indole by whole cells of recombinant biphenyl dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase. Biochemical Engineering Journal, 2013, 72, 54-60.	1.8	25
86	Biotransformation of Chloro-Substituted Indoles to Indigoids by Phenol Hydroxylase from Arthrobacter sp. W1. Applied Biochemistry and Biotechnology, 2013, 170, 951-961.	1.4	2
87	Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Applied Biochemistry and Biotechnology, 2013, 169, 2064-2075.	1.4	4
88	Biotransformation of Indole to Indigo by the Whole Cells of Phenol Hydroxylase Engineered Strain in Biphasic Systems. Applied Biochemistry and Biotechnology, 2013, 169, 1088-1097.	1.4	14
89	The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Applied Microbiology and Biotechnology, 2013, 97, 10399-10411.	1.7	12
90	Tuning the substrate selectivity of meta-cleavage product hydrolase by domain swapping. Applied Microbiology and Biotechnology, 2013, 97, 5343-5350.	1.7	4

#	Article	IF	Citations
91	Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. MQ for indigoids production. Process Biochemistry, 2013, 48, 581-587.	1.8	24
92	Catalytic performance and stability of C-C bond hydrolase BphD immobilized onto single-wall carbon nanotubes. Chinese Journal of Catalysis, 2013, 34, 723-733.	6.9	7
93	Genome Sequence of Dyella ginsengisoli Strain LA-4, an Efficient Degrader of Aromatic Compounds. Genome Announcements, 2013, 1, .	0.8	14
94	Genome Sequence of Sphingomonas xenophaga QYY, an Anthraquinone-Degrading Strain. Genome Announcements, 2013, 1, .	0.8	4
95	Genome Sequence of a Novel Indigo-Producing Strain, Pseudomonas monteilii QM. Journal of Bacteriology, 2012, 194, 4459-4460.	1.0	9
96	Characterization of a Novel Phenol Hydroxylase in Indoles Biotranformation from a Strain Arthrobacter sp. W1. PLoS ONE, 2012, 7, e44313.	1.1	25
97	Optimization of indigo production by a newly isolated <i>Pseudomonas</i> sp. QM. Journal of Basic Microbiology, 2012, 52, 687-694.	1.8	25
98	Molecularâ€Simulationâ€Assisted Immobilization and Catalytic Performance of CC Hydrolase MfphA on SBAâ€15 Mesoporous Silica. ChemPlusChem, 2012, 77, 293-300.	1.3	7
99	Systematical strategies for wastewater treatment and the generated wastes and greenhouse gases in China. Frontiers of Environmental Science and Engineering, 2012, 6, 271-279.	3.3	13
100	Promiscuous esterase activities of the C–C hydrolases from Dyella ginsengisoli. Biotechnology Letters, 2012, 34, 1107-1113.	1.1	10
101	Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL. Journal of Hazardous Materials, 2012, 223-224, 31-38.	6.5	66
102	Isolation, characterization and docking studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase from an activated sludge metagenome. Biotechnology Letters, 2012, 34, 117-123.	1.1	3
103	Indigo biosynthesis by Comamonas sp. MQ. Biotechnology Letters, 2012, 34, 353-357.	1.1	35
104	Optimization of 2,3-dihydroxybiphenyl 1,2-dioxygenase expression and its application for biosensor. Bioresource Technology, 2011, 102, 10553-10560.	4.8	8
105	Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor. World Journal of Microbiology and Biotechnology, 2011, 27, 1919-1926.	1.7	21
106	Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World Journal of Microbiology and Biotechnology, 2011, 27, 2559-2565.	1.7	90
107	Nitroreductase activity of ferredoxin reductase BphA4 from Dyella ginsengisoli LAâ^4 by catalytic and structural properties analysis. Applied Microbiology and Biotechnology, 2011, 89, 655-663.	1.7	7
108	Identification and characterization of Leucobacter sp. N-4 for Ni (II) biosorption by response surface methodology. Journal of Hazardous Materials, 2011, 190, 869-875.	6.5	19

#	Article	lF	CITATION
109	Extradiol dioxygenase–SiO2 sol–gel modified electrode for catechol and its derivatives detection. Biosensors and Bioelectronics, 2011, 26, 4362-4367.	5.3	13
110	Characterization of a novel meta-fission product hydrolase from Dyella ginsengisoli LA-4. Process Biochemistry, 2010, 45, 94-100.	1.8	9
111	Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresource Technology, 2010, 101, 4527-4532.	4.8	32
112	Decolorization of Reactive Dark Blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresource Technology, 2010, 101, 8016-8023.	4.8	73
113	Microbial community shifts in sequencing batch reactors for azo dye treatment. Pure and Applied Chemistry, 2010, 82, 299-306.	0.9	4
114	Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. Journal of Environmental Sciences, 2009, 21, 211-217.	3.2	35
115	Biodegradation of Mixed Phenolic Compounds Under High Salt Conditions and Salinity Fluctuations by Arthrobacter sp. W1. Applied Biochemistry and Biotechnology, 2009, 159, 623-633.	1.4	29
116	Characterization of a Newly Isolated Biphenyl-Degrading Bacterium, Dyella ginsengisoli LA-4. Applied Biochemistry and Biotechnology, 2009, 159, 687-695.	1.4	19
117	Characterization of catechol 1,2-dioxygenase from cell extracts of Sphingomonas xenophaga QYY. Science in China Series B: Chemistry, 2009, 52, 615-620.	0.8	14
118	Enzyme–substrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase from <i>Dyella ginsengisoli</i> LA-4. FEMS Microbiology Letters, 2009, 292, 231-239.	0.7	20
119	Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Journal of Hazardous Materials, 2009, 170, 314-319.	6.5	94
120	Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and	4.8	60