
Chien-Hsiu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994991/publications.pdf Version: 2024-02-01

CHIEN-HSULLEE

#	Article	IF	CITATIONS
1	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
2	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	327
3	Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	203
4	The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	156
5	J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	155
6	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at zÂ=Â6. Astrophysical Journal, 2018, 869, 150.	4.5	153
7	SILVERRUSH. III. Deep optical and near-infrared spectroscopy for Lyα and UV-nebular lines of bright Lyα emitters at <i>z</i> Â=Â6–7. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	119
8	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	8.3	114
9	SILVERRUSH. V. Census of Lyα, [O iii] λ5007, Hα, and [C ii] 158 μm Line Emission with â^¼1000 LAEs at zÂ=Â4 Revealed with Subaru/HSC. Astrophysical Journal, 2018, 859, 84.	l.9–7.0 4.5	102
10	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	95
11	Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1507-1544.	4.4	90
12	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1Ââ‰ Â zÂâ‰ Â 6.7. Astrophysical Journal, 2019, 880, 77.	4.5	90
13	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÂzÂâ‰Â6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	7.7	81
14	THE INFLUENCE OF DARK MATTER HALOS ON DYNAMICAL ESTIMATES OF BLACK HOLE MASS: 10 NEW MEASUREMENTS FOR HIGH-Ï f EARLY-TYPE GALAXIES. Astronomical Journal, 2013, 146, 45.	4.7	79
15	Campaign 9 of the <i>K2</i> Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey. Publications of the Astronomical Society of the Pacific, 2016, 128, 124401.	3.1	79
16	DETECTION OF AN OUTBURST ONE YEAR PRIOR TO THE EXPLOSION OF SN 2011ht. Astrophysical Journal Letters, 2013, 779, L8.	8.3	77
17	The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	74
18	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 â‰ÂzÂâ‰Â7.0. Astrophysical Journal, 2019, 883, 183.	4.5	74

#	Article	IF	CITATIONS
19	THE PAN-STARRS1 MEDIUM-DEEP SURVEY: THE ROLE OF GALAXY GROUP ENVIRONMENT IN THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION AND QUIESCENT FRACTION OUT TO <i>z</i> â ¹ /4 0.8. Astrophysical Journal, 2014, 782, 33.	4.5	73
20	GOLDRUSH. III. A systematic search for protoclusters at <i>z</i> Ââ^¼Â4 based on the >100Âdeg2 area. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	71
21	SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at zÂâ^¼Â6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 883, 142.	4.5	71
22	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	68
23	THE <i>K2</i> -ESPRINT PROJECT III: A CLOSE-IN SUPER-EARTH AROUND A METAL-RICH MID-M DWARF. Astrophysical Journal, 2016, 820, 41.	4.5	62
24	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	51
25	Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). Astronomy and Astrophysics, 2019, 630, A71.	5.1	47
26	Artificial intelligence in research. Science, 2017, 357, 28-30.	12.6	44
27	CHORUS. II. Subaru/HSC Determination of the Ly <i>$\hat{1}$±</i> Luminosity Function at <i>z</i> = 7.0: Constraints on Cosmic Reionization Model Parameter. Astrophysical Journal, 2018, 867, 46.	4.5	44
28	Luminous quasars do not live in the most overdense regions of galaxies at <i>z</i> Ââ^1/4Â4. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	43
29	Extremely Metal-poor Representatives Explored by the Subaru Survey (EMPRESS). I. A Successful Machine-learning Selection of Metal-poor Galaxies and the Discovery of a Galaxy with M* < 10 ⁶ M _⊙ and 0.016 Z _⊙ * †â€j. Astrophysical Journal, 2020, 898, 14	4.5 2.	43
30	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	42
31	Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI). II. Environments and Line-of-Sight Structure of Strong Gravitational Lens Galaxies to zĂâ^¼Â0.8. Astrophysical Journal, 2018, 867, 107.	4.5	41
32	SILVERRUSH. VI. A simulation of Lyα emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	40
33	Weak lensing analysis of RXCÂJ2248.7â^'4431. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1455-1467.	4.4	39
34	Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates. Astrophysical Journal Letters, 2017, 835, L25.	8.3	39
35	Preliminary Target Selection for the DESI Milky Way Survey (MWS). Research Notes of the AAS, 2020, 4, 188.	0.7	38
36	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	37

#	Article	IF	CITATIONS
37	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale Feedback and Star Formation in a Low-luminosity Quasar at z = 7.07 on the Local Black Hole to Host Mass Relation. Astrophysical Journal, 2021, 914, 36.	4.5	37
38	An Imperfectly Passive Nature: Bright Submillimeter Emission from Dust-obscured Star Formation in the zÂ=Â3.717 "Passive―System, ZF 20115. Astrophysical Journal Letters, 2017, 844, L10.	8.3	35
39	PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1. Astronomical Journal, 2012, 143, 89.	4.7	34
40	Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm. Astrophysical Journal Letters, 2017, 849, L4.	8.3	33
41	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). Astronomy and Astrophysics, 2020, 642, A148.	5.1	32
42	The ANTARES Astronomical Time-domain Event Broker. Astronomical Journal, 2021, 161, 107.	4.7	31
43	First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh- <i>Z</i> SUpernova CAmpaign (SHIZUCA). I. Photometric Properties. Astrophysical Journal, Supplement Series, 2019, 241, 16.	7.7	30
44	Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) – V. Group-to-cluster scale lens search from the HSC–SSP Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1291-1310.	4.4	30
45	CLUSTERING OF INFRARED-BRIGHT DUST-OBSCURED GALAXIES REVEALED BY THE HYPER SUPRIME-CAM AND WISE. Astrophysical Journal, 2017, 835, 36.	4.5	28
46	THE M31 NEAR-INFRARED PERIOD-LUMINOSITY RELATION AND ITS NON-LINEARITY FOR δ Cep VARIABLES WITH 0.5 ⩽ log (<i>P</i>) ⩽ 1.7. Astrophysical Journal, 2015, 799, 144.	4.5	26
47	Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI). Astronomy and Astrophysics, 2020, 636, A87.	5.1	26
48	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties Derived from the SED Fitting with Optical, Infrared, and Radio Data. Astrophysical Journal, Supplement Series, 2019, 243, 15.	7.7	25
49	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0. Astrophysical Journal, Supplement Series, 2022, 259, 18.	7.7	25
50	SCUBA-2 Ultra Deep Imaging EAO Survey (Studies). III. Multiwavelength Properties, Luminosity Functions, and Preliminary Source Catalog of 450 1¼m Selected Galaxies. Astrophysical Journal, 2020, 889, 80.	4.5	24
51	SILVERRUSH. II. First catalogs and properties of â^¼2000 Lyα emitters and blobs at <i>z</i> Ââ^¼Â6–7 identific over the 14–21 deg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	ed 2.5	23
52	FINITE-SOURCE EFFECTS IN MICROLENSING: A PRECISE, EASY TO IMPLEMENT, FAST, AND NUMERICALLY STABLE FORMALISM. Astrophysical Journal, 2009, 695, 200-207.	4.5	22
53	CHARACTERIZATION OF THE PRAESEPE STAR CLUSTER BY PHOTOMETRY AND PROPER MOTIONS WITH 2MASS, PPMXL, AND Pan-STARRS. Astrophysical Journal, 2014, 784, 57.	4.5	22
54	The Hyper Suprime-Cam SSP transient survey in COSMOS: Overview. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	22

#	Article	IF	CITATIONS
55	Detection of Diatomic Carbon in 21/Borisov. Astrophysical Journal Letters, 2020, 889, L30.	8.3	22
56	PROPERTIES OF M31. II. A CEPHEID DISK SAMPLE DERIVED FROM THE FIRST YEAR OF PS1 PANDROMEDA DATA. Astronomical Journal, 2013, 145, 106.	4.7	21
57	A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC J115252+004733. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2411-2419.	4.4	19
58	Comparison of cosmological simulations and deep submillimetre galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1852-1864.	4.4	18
59	SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at z = 2.2, 3.3, 4.9, 5.7, 6.6, and 7.0 from the HSC SSP and CHORUS Survey Data. Astrophysical Journal, 2021, 911, 78.	4.5	18
60	First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties. Astrophysical Journal, Supplement Series, 2019, 241, 17.	7.7	17
61	Imaging Polarimetry of the Type I Superluminous Supernova 2018hti. Astrophysical Journal, 2019, 875, 121.	4.5	16
62	Optical Polarimetry of the Tidal Disruption Event AT2019DSG. Astrophysical Journal Letters, 2020, 892, L1.	8.3	16
63	EMPRESS. II. Highly Fe-enriched Metal-poor Galaxies with â^¼1.0 (Fe/O) _⊙ and 0.02 (O/H) _⊙ : Possible Traces of Supermassive (>300 M _⊙) Stars in Early Galaxies* â Astrophysical Journal, 2021, 913, 22.	€â£j.	16
64	EMPRESS. IV. Extremely Metal-poor Galaxies Including Very Low-mass Primordial Systems with M _* = 10 ⁴ –10 ⁵ M _⊙ and 2%–3% (O/H): High (Fe/O) Suggestive of Metal Enrichment by Hypernovae/Pair-instability Supernovae. Astrophysical Journal, 2022, 925, 111.	4.5	16
65	Finite-source and finite-lens effects in astrometric microlensing. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1597-1608.	4.4	15
66	Cepheids in M31: The PAndromeda Cepheid Sample. Astronomical Journal, 2018, 156, 130.	4.7	15
67	The Brightest UV-selected Galaxies in Protoclusters at zÂâ^1⁄4Â4: Ancestors of Brightest Cluster Galaxies?. Astrophysical Journal, 2019, 878, 68.	4.5	15
68	EMPRESS. III. Morphology, Stellar Population, and Dynamics of Extremely Metal-poor Galaxies (EMPGs): Are EMPGs Local Analogs of High-z Young Galaxies?*. Astrophysical Journal, 2021, 918, 54.	4.5	15
69	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XI. Proximity Zone Analysis for Faint Quasar Spectra at zÂâ^¼Â6. Astrophysical Journal, 2020, 903, 60.	4.5	15
70	PROPERTIES OF M31. V. 298 ECLIPSING BINARIES FROM PAndromeda. Astrophysical Journal, 2014, 797, 22.	4.5	14
71	A 16Âdeg2 survey of emission-line galaxies at <i>z</i> Â<Â1.6 from HSC-SSP PDR2 and CHORUS. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	14
72	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIV. A Candidate Type II Quasar at z = 6.1292. Astrophysical Journal, 2021, 919, 61.	4.5	14

#	Article	IF	CITATIONS
73	CHORUS. I. Cosmic HydrOgen Reionization Unveiled with Subaru: Overview. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	14
74	Late-phase Spectropolarimetric Observations of Superluminous Supernova SN 2017egm to Probe the Geometry of the Inner Ejecta. Astrophysical Journal, 2020, 894, 154.	4.5	14
75	Subaru Hyper Suprime-Cam Survey for an optical counterpart of GW170817. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	13
76	SILVERRUSH. IX. Lyα Intensity Mapping with Star-forming Galaxies at z = 5.7 and 6.6: A Possible Detection of Extended Lyα Emission at ≳100 Comoving Kiloparsecs around and beyond the Virial-radius Scale of Galaxy Dark Matter Halos. Astrophysical Journal, 2021, 916, 22.	4.5	13
77	The UV Luminosity Function of Protocluster Galaxies at zÂâ^¼Â4: The Bright-end Excess and the Enhanced Star Formation Rate Density. Astrophysical Journal, 2020, 899, 5.	4.5	13
78	PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT. Astrophysical Journal, 2013, 777, 35.	4.5	12
79	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERCS). I. The Optical Counterparts of FIRST Radio Sources. Astrophysical Journal, 2018, 866, 140.	4.5	12
80	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XII. Extended [C ii] Structure (Merger) Tj ETQq0	0_0_rgBT / 4.5	Overlock 10
81	SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES). II. Structural Properties and Near-infrared Morphologies of Faint Submillimeter Galaxies. Astrophysical Journal, 2018, 865, 103.	4.5	11
82	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERCS). III. Discovery of a zÂ=Â4.72 Radio Galaxy with the Lyman Break Technique. Astronomical Journal, 2020, 160, 60.	4.7	11
83	Exoplanets: Past, Present, and Future. Galaxies, 2018, 6, 51.	3.0	10
84	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two red quasars at <i>z</i> > 5.6. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	10
85	A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge. Astrophysical Journal, 2020, 892, 112.	4.5	10
86	PROPERTIES OF M31. IV. CANDIDATE LUMINOUS BLUE VARIABLES FROM PANDROMEDA. Astrophysical Journal, 2014, 785, 11.	4.5	9
87	MICROLENSING EVENTS FROM THE 11 YEAR OBSERVATIONS OF THE WENDELSTEIN CALAR ALTO PIXELLENSING PROJECT. Astrophysical Journal, 2015, 806, 161.	4.5	9
88	Correlation of extragalactic \hat{I}^3 rays with cosmic matter density distributions from weak gravitational lensing. Physical Review D, 2018, 97, .	4.7	8
89	Subaru Hyper Suprime-Cam excavates colossal over- and underdense structures over 360 deg2 out to <i>z</i> = 1. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3896-3912.	4.4	8
90	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing (Super)Massive Black Holes in Extremely Radio-loud Galaxies. Astrophysical Journal, 2021, 921, 51.	4.5	8

#	Article	IF	CITATIONS
91	CHORUS. IV. Mapping the Spatially Inhomogeneous Cosmic Reionization with Subaru HSC. Astrophysical Journal, 2022, 927, 32.	4.5	8
92	A hot Jupiter transiting a mid-K dwarf found in the pre-OmegaCam Transit Survey. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3133-3147.	4.4	7
93	Properties of eclipsing binaries from all-sky surveys – II. Detached eclipsing binaries in Catalina Sky Surveys. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2946-2953.	4.4	7
94	Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST. Research in Astronomy and Astrophysics, 2017, 17, 15.	1.7	7
95	Early optical imaging polarimetry of type I superluminous supernova 2020ank. Astronomische Nachrichten, 2020, 341, 651-655.	1.2	7
96	Discovery of an unusually compact lensed Lyman-break galaxy from the Hyper Suprime-Cam Survey. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3156-3165.	4.4	7
97	HSC16aayt: A Slowly Evolving Interacting Transient Rising for More than 100 Days. Astrophysical Journal, 2019, 882, 70.	4.5	7
98	A Computer Vision Approach to Identify Einstein Rings and Arcs. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	6
99	Evidence that the Planetary Candidate CVSO30c is a Background Star from Optical, Seeing-limited Data. Astrophysical Journal Letters, 2018, 852, L24.	8.3	6
100	Near-infrared Survey and Photometric Redshifts in the Extended GOODS-North Field. Astrophysical Journal, 2019, 871, 233.	4.5	6
101	SILVERRUSH. XII. Intensity Mapping for Lyα Emission Extending over 100–1000 Comoving Kpc around z â^¼ 2a LAEs with Subaru HSC-SSP and CHORUS Data. Astrophysical Journal, 2022, 931, 97.	â^'7 4.5	6
102	Microlensing and Its Degeneracy Breakers: Parallax, Finite Source, High-Resolution Imaging, and Astrometry. Universe, 2017, 3, 53.	2.5	5
103	The HASHTAG Project: The First Submillimeter Images of the Andromeda Galaxy from the Ground. Astrophysical Journal, Supplement Series, 2021, 257, 52.	7.7	5
104	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). VI. Distant Filamentary Structures Pointed Out by High-z Radio Galaxies at z â^1⁄4 4. Astrophysical Journal, 2022, 926, 76.	4.5	5
105	VI-BAND FOLLOW-UP OBSERVATIONS OF ULTRA-LONG-PERIOD CEPHEID CANDIDATES IN M31. Astronomical Journal, 2015, 149, 66.	4.7	4
106	A closer look at the quadruply lensed quasar PSOJ0147: spectroscopic redshifts and microlensing effect. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3086-3089.	4.4	4
107	Constraints on the Rate of Supernovae Lasting for More Than a Year from Subaru/Hyper Suprime-Cam. Astrophysical Journal, 2021, 908, 249.	4.5	4
108	AT 2020iko: A WZ Sge-type Dwarf Nova Candidate with an Anomalous Precursor Event. Astronomical Journal, 2021, 161, 15.	4.7	4

#	Article	IF	CITATIONS
109	SDSS-IV MaNGA: The Nature of an Off-galaxy H _α Blob—A Multiwavelength View of Offset Cooling in a Merging Galaxy Group. Astrophysical Journal, 2020, 903, 16.	4.5	4
110	Properties of eclipsing binaries from all-sky surveys – I. Detached eclipsing binaries in ASAS, NSVS, and LINEAR. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3475-3483.	4.4	3
111	OGLE-2015-BLG-1649Lb: A Gas Giant Planet around a Low-mass Dwarf. Astronomical Journal, 2019, 158, 212.	4.7	3
112	The HASHTAG project I. A survey of CO(3–2) emission from the star forming disc of M31. Monthly Notices of the Royal Astronomical Society, 2020, 492, 195-209.	4.4	3
113	AT2020caa: A Type Ia Supernova with a Prior Outburst or a Statistical Fluke?. Research Notes of the AAS, 2021, 5, 62.	0.7	3
114	FLAMINGOS-2 Infrared Photometry of 2I/Borisov. Research Notes of the AAS, 2019, 3, 184.	0.7	3
115	AGB stars in Leo P and their use as metallicity probes. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L37-L40.	3.3	2
116	Supernovae: Magnification by gravity. Nature Astronomy, 2017, 1, .	10.1	2
117	SDSSJ1156â^'0207: A 0.54+0.19 M _⊙ Double-lined M-Dwarf Eclipsing Binary System. Astronomical Journal, 2018, 155, 86.	4.7	2
118	Spectroscopic Confirmation of the Quadruply Lensed Quasar WG0214-2105. Astronomical Journal, 2019, 157, 14.	4.7	2
119	ZTF18abhjrcf: The First R Coronae Borealis Star from the Zwicky Transient Facility Public Survey. Astronomical Journal, 2020, 159, 61.	4.7	2
120	Infrared Observations of 2I/Borisov near Perihelion. Astronomical Journal, 2020, 160, 132.	4.7	2
121	Identifying Multiply Lensed Supernovae from Ellipticity. Research Notes of the AAS, 2018, 2, 186.	0.7	2
122	Optical Rebrightening of Extragalactic Transients from the Zwicky Transient Facility. Astrophysical Journal Letters, 2022, 926, L11.	8.3	2
123	Using the Palomar Transient Factory to search for ultra-long-period Cepheid candidates in M31. , 2013, ,		1
124	A closer look at the Canarias Einstein ring. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3006-3010.	4.4	1
125	A Double-line M-dwarf Eclipsing Binary from CSSÂ×ÂSDSS. Astronomical Journal, 2017, 153, 118.	4.7	1
126	Photometric and Spectroscopic Follow-up of the Recently Activated Asteroid 6478 Gault. Astronomical Journal, 2019, 158, 92.	4.7	1

#	Article	IF	CITATIONS
127	A Star-forming Galaxy in the Localization Region of FRB 110214. Astrophysical Journal, 2019, 880, 131.	4.5	1
128	Early Observations of the Interstellar Comet 2I/Borisov. Geosciences (Switzerland), 2019, 9, 519.	2.2	1
129	A Closer Look at CVSO30b: Transiting Exoplanet or Circumstellar Dust Clump?. Research Notes of the AAS, 2017, 1, 41.	0.7	1
130	Identifying Rings in IFU Surveys. Research Notes of the AAS, 2017, 1, 12.	0.7	1
131	Extra-galactic Distances with Massive Stars: The Role of Stellar Variability in the Case of M33. Astronomical Journal, 2017, 154, 75.	4.7	0
132	Spectroscopic follow-up of the quadruply lensed quasar WGD2038-4008/GRAL2038-4008. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	0
133	ANTARES: A gateway to ZTF and LSST alerts. Proceedings of the International Astronomical Union, 2019, 15, 24-27.	0.0	0
134	Rapid evolution and transformation into quiescence?: ALMA view on z > 6 low-luminosity quasars. Proceedings of the International Astronomical Union, 2019, 15, 139-143.	0.0	0
135	X-ray study of the double source plane gravitational lens system Eye of Horus observed with XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3411-3418.	4.4	0
136	Searching for Eclipses of the SDSS-III/APOGEE M Dwarf Multiples. Research Notes of the AAS, 2018, 2, 63.	0.7	0
137	Serendipitous Discovery of a Candidate Ultra-cool Dwarf in the Pan-STARRS, 2MASS, and WISE Surveys. Research Notes of the AAS, 2018, 2, 123.	0.7	Ο