Anjaneyulu Kowluru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994731/publications.pdf

Version: 2024-02-01

101543 182427 3,651 133 36 51 citations h-index g-index papers 133 133 133 2851 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TIAM1â€"RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 2014, 57, 1047-1056.	6.3	114
2	Small G Proteins in Islet Î ² -Cell Function. Endocrine Reviews, 2010, 31, 52-78.	20.1	112
3	Increased Phagocyte-Like NADPH Oxidase and ROS Generation in Type 2 Diabetic ZDF Rat and Human Islets. Diabetes, 2011, 60, 2843-2852.	0.6	102
4	Localization and Characterization of the Mitochondrial Isoform of the Nucleoside Diphosphate Kinase in the Pancreatic \hat{l}^2 Cell: Evidence for Its Complexation with Mitochondrial Succinyl-CoA Synthetase. Archives of Biochemistry and Biophysics, 2002, 398, 160-169.	3.0	100
5	A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent \hat{l}^2 cells. Biochemical Journal, 1996, 313, 97-107.	3.7	96
6	Evidence for Differential Roles of the Rho Subfamily of GTP-Binding Proteins in Glucose- and Calcium-Induced Insulin Secretion from Pancreatic Î ² Cells. Biochemical Pharmacology, 1997, 54, 1097-1108.	4.4	85
7	Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 \hat{l}^2 -cells. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E818-E827.	3.5	80
8	Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy., 2018, 59, 4831.		70
9	Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochemical Pharmacology, 2014, 88, 275-283.	4.4	66
10	Friendly, and not so friendly, roles of Rac1 in islet \hat{l}^2 -cell function: Lessons learnt from pharmacological and molecular biological approaches. Biochemical Pharmacology, 2011, 81, 965-975.	4.4	64
11	Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: Potential mechanisms and functional consequences. Biochemical Pharmacology, 2012, 84, 591-597.	4.4	64
12	Tiam1/Rac1 signaling pathway mediates palmitate-induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of mitochondrial membrane potential in pancreatic \hat{I}^2 -cells. Biochemical Pharmacology, 2010, 80, 874-883.	4.4	63
13	Rho Guanosine Diphosphate–Dissociation Inhibitor Plays a Negative Modulatory Role in Glucose-Stimulated Insulin Secretion. Diabetes, 2005, 54, 3523-3529.	0.6	58
14	Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: evidence for regulation by Rac1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R12-R20.	1.8	58
15	Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets, 2011, 3, 213-223.	1.8	57
16	Prolonged Depletion of Guanosine Triphosphate Induces Death of Insulin-Secreting Cells by Apoptosis*. Endocrinology, 1998, 139, 3752-3762.	2.8	56
17	Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism: Clinical and Experimental, 2016, 65, 1570-1581.	3.4	56
18	Regulatory roles for small G proteins in the pancreatic β-cell: lessons from models of impaired insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E669-E684.	3.5	54

#	Article	IF	CITATIONS
19	Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic \hat{l}^2 -cells. Biochemical Pharmacology, 2009, 77, 101-113.	4.4	54
20	The Regulatory Roles of Mitogen-Activated Protein Kinase (MAPK) Pathways in Health and Diabetes: Lessons Learned from the Pancreatic β-Cell. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2017, 10, 76-84.	0.6	54
21	Characterization of Nucleoside Diphosphokinase Activity in Human and Rodent Pancreatic .beta. Cells: Evidence for Its Role in the Formation of Guanosine Triphosphate, a Permissive Factor for Nutrient-Induced Insulin Secretion. Biochemistry, 1994, 33, 12495-12503.	2.5	52
22	Ceramide induces mitochondrial abnormalities in insulin-secreting INS-1 cells: Potential mechanisms underlying ceramide-mediated metabolic dysfunction of the \hat{l}^2 cell. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 841-850.	4.9	49
23	Potential Contributory Role of H-Ras, a Small G-Protein, in the Development of Retinopathy in Diabetic Rats. Diabetes, 2004, 53, 775-783.	0.6	48
24	Dominant-Negative Â-Subunit of Farnesyl- and Geranyltransferase Inhibits Glucose-Stimulated, but Not KCl-Stimulated, Insulin Secretion in INS 832/13 Cells. Diabetes, 2007, 56, 204-210.	0.6	47
25	Protein Farnesylation–Dependent Raf/Extracellular Signal–Related Kinase Signaling Links to Cytoskeletal Remodeling to Facilitate Glucose-Induced Insulin Secretion in Pancreatic l²-Cells. Diabetes, 2010, 59, 967-977.	0.6	47
26	Mastoparan-Induced Insulin Secretion from Insulin-Secreting \hat{I}^2TC3 and INS-1 Cells: Evidence for Its Regulation by Rho Subfamily of G Proteins. Endocrinology, 2003, 144, 4508-4518.	2.8	46
27	Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 \hat{l}^2 -cells and rat islets. Biochemical Pharmacology, 2011, 81, 1016-1027.	4.4	46
28	Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation. Cellular Physiology and Biochemistry, 2015, 36, 208-220.	1.6	45
29	Ceramide-activated protein phosphatase-2A activity in insulin-secreting cells. FEBS Letters, 1997, 418, 179-182.	2.8	44
30	Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: role of protein prenylation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R756-R762.	1.8	43
31	Subcellular localization and kinetic characterization of guanine nucleotide binding proteins in normal rat and human pancreatic islets and transformed \hat{l}^2 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 348-359.	4.1	41
32	The stimulus-secretion coupling of glucose-induced insulin release. Thiol: disulfide balance in pancreatic islets. Biochimie, 1982, 64, 29-36.	2.6	40
33	Positive modulation by Ras of interleukin-112-mediated nitric oxide generation in insulin-secreting clonal \hat{l}^2 (HIT-T15) cells 1 1Abbreviations: IL-1 \hat{l}^2 interleukin-1 \hat{l}^2 ; NO, nitric oxide; iNOS, induced nitric oxide synthase; IDDM, insulin-dependent diabetes mellitus; LT, lethal toxin; CNF1, cytotoxic necrotizing factor 1; PTMs, post-translational modifications; and L-NMMA: N-monomethyl-l-arginine monoacetate	4.4	40
34	Stochemical Pharmacology, 2001, 62, 1459-1468. Identification and characterization of a novel protein histidine kinase in the islet \hat{I}^2 cell: evidence for its regulation by mastoparan, an activator of G-proteins and insulin secretion. Biochemical Pharmacology, 2002, 63, 2091-2100.	4.4	40
35	Characterization of prenylcysteine methyltransferase in insulin-secreting cells. Biochemical Journal, 1996, 316, 345-351.	3.7	39
36	Upregulation of phagocyte-like NADPH oxidase by cytokines in pancreatic beta-cells: Attenuation of oxidative and nitrosative stress by 2-bromopalmitate. Biochemical Pharmacology, 2013, 85, 109-114.	4.4	39

#	Article	IF	CITATIONS
37	Defective protein histidine phosphorylation in islets from the Goto-Kakizaki diabetic rat. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E498-E503.	3.5	37
38	Glucotoxic conditions induce endoplasmic reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic \hat{l}^2 -cells: Protection by nifedipine. Biochemical Pharmacology, 2013, 86, 1338-1346.	4.4	36
39	Phagocyte-like NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic \hat{l}^2 -cells under glucotoxic conditions: Evidence for a requisite role of Ras-related C3 botulinum toxin substrate 1 (Rac1). Biochemical Pharmacology, 2015, 95, 301-310.	4.4	36
40	Inhibition of Glucose- and Calcium-Induced Insulin Secretion from \hat{I}^2TC3 Cells by Novel Inhibitors of Protein Isoprenylation. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 82-88.	2.5	35
41	VAV2, a guanine nucleotide exchange factor for Rac1, regulates glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia, 2015, 58, 2573-2581.	6.3	34
42	Essential Role for Membrane Lipid Rafts in Interleukin-1Â-Induced Nitric Oxide Release From Insulin-Secreting Cells: Potential Regulation by Caveolin-1+. Diabetes, 2005, 54, 2576-2585.	0.6	33
43	Biologically active lipids promote trafficking and membrane association of Rac1 in insulin-secreting INS 832/13 cells. American Journal of Physiology - Cell Physiology, 2007, 292, C1216-C1220.	4.6	33
44	NSC23766, a Known Inhibitor of Tiam1-Rac1 Signaling Module, Prevents the Onset of Type 1 Diabetes in the NOD Mouse Model. Cellular Physiology and Biochemistry, 2016, 39, 760-767.	1.6	32
45	Regulation of guanine — nucleotide binding proteins in islet subcellular fractions by phospholipase-derived lipid mediators of insulin secretion. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 360-368.	4.1	31
46	A novel histone deacetylase inhibitor prevents ILâ€1β induced metabolic dysfunction in pancreatic βâ€cells. Journal of Cellular and Molecular Medicine, 2009, 13, 1877-1885.	3.6	31
47	Glucose activates prenyltransferases in pancreatic islet \hat{l}^2 -cells. Biochemical and Biophysical Research Communications, 2010, 391, 895-898.	2.1	31
48	Tiam1/Vav2-Rac1 axis: A tug-of-war between islet function and dysfunction. Biochemical Pharmacology, 2017, 132, 9-17.	4.4	31
49	Novel regulatory roles for protein phosphatase-2A in the islet \hat{l}^2 cell. Biochemical Pharmacology, 2005, 69, 1681-1691.	4.4	30
50	High Glucose Exposure Promotes Activation of Protein Phosphatase 2A in Rodent Islets and INS-1 832/13 \hat{l}^2 -Cells by Increasing the Posttranslational Carboxylmethylation of Its Catalytic Subunit. Endocrinology, 2014, 155, 380-391.	2.8	30
51	COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and \hat{l}^2 -Cell ER Homeostasis. Molecular Endocrinology, 2015, 29, 1156-1169.	3.7	30
52	Protein prenylation in glucoseâ€induced insulin secretion from the pancreatic islet β cell: a perspective. Journal of Cellular and Molecular Medicine, 2008, 12, 164-173.	3.6	29
53	Metabolic Stress Induces Caspase-3 Mediated Degradation and Inactivation of Farnesyl and Geranylgeranyl Transferase Activities in Pancreatic \hat{l}^2 -Cells. Cellular Physiology and Biochemistry, 2016, 39, 2110-2120.	1.6	28
54	Role of Gâ€proteins in islet function in health and diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 63-75.	4.4	28

#	Article	IF	Citations
55	Secretagogue-responsive and -unresponsive pools of phosphatidylinositol in pancreatic islets. Archives of Biochemistry and Biophysics, 1986, 245, 411-416.	3.0	27
56	Regulation by glucose and calcium of the carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting INS-1 cells. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E1032-E1041.	3.5	27
57	Novel roles for palmitoylation of Ras in IL- $1\hat{l}^2$ -induced nitric oxide release and caspase 3 activation in insulin-secreting \hat{l}^2 cells. Biochemical Pharmacology, 2003, 66, 1681-1694.	4.4	25
58	CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochemical and Biophysical Research Communications, 2018, 495, 2221-2226.	2.1	25
59	Non-specific stimulatory effects of mastoparan on pancreatic islet nucleoside diphosphokinase activity: Dissociation from insulin secretion. Biochemical Pharmacology, 1995, 49, 263-266.	4.4	23
60	Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet \hat{l}^2 -cells: reversal of such metabolic defects by metformin. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1380-1393.	4.9	22
61	Rab-geranylgeranyl transferase regulates glucose-stimulated insulin secretion from pancreatic \hat{l}^2 cells. Islets, 2012, 4, 354-358.	1.8	20
62	Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic \hat{l}^2 -cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 597-607.	4.9	20
63	GTP-binding proteins in cell survival and demise: the emerging picture in the pancreatic \hat{l}^2 -cell. Biochemical Pharmacology, 2002, 63, 1027-1035.	4.4	19
64	RACking up ceramide-induced islet β-cell dysfunction. Biochemical Pharmacology, 2018, 154, 161-169.	4.4	19
65	Novel Roles for the Rho Subfamily of GTPâ€Binding Proteins in Succinateâ€Induced Insulin Secretion from βTC3 Cells: Further Evidence in Support of the Succinate Mechanism of Insulin Release. Endocrine Research, 2003, 29, 363-376.	1.2	18
66	Regulatory roles for histone deacetylation in ILâ \in 1 \hat{l}^2 â \in induced nitric oxide release in pancreatic \hat{l}^2 â \in cells. Journal of Cellular and Molecular Medicine, 2008, 12, 1571-1583.	3.6	18
67	Emerging roles for protein histidine phosphorylation in cellular signal transduction: lessons from the islet l²â€cell. Journal of Cellular and Molecular Medicine, 2008, 12, 1885-1908.	3.6	18
68	Oxidative Stress in Cytokine-Induced Dysfunction of the Pancreatic Beta Cell: Known Knowns and Known Unknowns. Metabolites, 2020, 10, 480.	2.9	18
69	GPCRs, G Proteins, and Their Impact on βâ€cell Function. , 2020, 10, 453-490.		18
70	The stimulus-secretion coupling of glucose-induced insulin release: Enzymes of mannose metabolism in pancreatic islets. Archives of Biochemistry and Biophysics, 1981, 212, 54-62.	3.0	17
71	Down-regulation of expression and function of nucleoside diphosphate kinase in insulin-secreting \hat{l}^2 -cells under in vitro conditions of glucolipotoxicity. Molecular and Cellular Biochemistry, 2009, 329, 121-129.	3.1	17
72	Glucotoxic and diabetic conditions induce caspase 6-mediated degradation of nuclear lamin A in human islets, rodent islets and INS-1 832/13 cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1691-1701.	4.9	17

#	Article	IF	CITATIONS
73	Glucose-induced, calcium-mediated protein phosphorylation in intact pancreatic islets. Archives of Biochemistry and Biophysics, 1984, 231, 320-327.	3.0	16
74	Protein phosphorylation in pancreatic islets: Evidence for separate Ca2+ and cAMP-enhanced phosphorylation of two 57,000 Mr proteins. Biochemical and Biophysical Research Communications, 1984, 118, 797-804.	2.1	16
75	Phospholipid methyltransferase activity in pancreatic islets: Activation by calcium. Archives of Biochemistry and Biophysics, 1985, 242, 72-81.	3.0	16
76	Activation of apocynin-sensitive NADPH oxidase (Nox2) activity in INS-1 832/13 cells under glucotoxic conditions. Islets, 2013, 5, 129-131.	1.8	16
77	Inosine Monophosphate Dehydrogenase: A Molecular Switch Integrating Pleiotropic GTP-Dependent beta-Cell Functions. Proceedings of the Association of American Physicians, 1999, 111, 335-346.	2.0	16
78	Regulation of glucose- and mitochondrial fuel-induced insulin secretion by a cytosolic protein histidine phosphatase in pancreatic \hat{l}^2 -cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E276-E286.	3.5	15
79	Protein prenylation in islet \hat{l}^2 -cell function in health and diabetes: Putting the pieces of the puzzle together. Biochemical Pharmacology, 2015, 98, 363-370.	4.4	15
80	L- <i>threo</i> -C ₆ -pyridinium-ceramide Bromide, a Novel Cationic Ceramide, Induces NADPH Oxidase Activation, Mitochondrial Dysfunction and Loss in Cell Viability in INS 832/13 i; ½-cells. Cellular Physiology and Biochemistry, 2012, 30, 1051-1058.	1.6	14
81	Nifedipine prevents etoposide-induced caspase-3 activation, prenyl transferase degradation and loss in cell viability in pancreatic \hat{I}^2 -cells. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1-8.	4.9	13
82	EHT 1864, a small molecule inhibitor of Ras-related C3 botulinum toxin substrate 1 (Rac1), attenuates glucose-stimulated insulin secretion in pancreatic \hat{l}^2 -cells. Cellular Signalling, 2015, 27, 1159-1167.	3.6	13
83	Quantitative proteomics reveals novel interaction partners of Rac1 in pancreatic \hat{l}^2 -cells: Evidence for increased interaction with Rac1 under hyperglycemic conditions. Molecular and Cellular Endocrinology, 2019, 494, 110489.	3.2	13
84	Evidence for calcium enhanced phosphorylation of pyruvate kinase by pancreatic islets. Molecular and Cellular Biochemistry, 1985, 68, 107-14.	3.1	12
85	Purine Nucleotide- and Sugar Phosphate-Induced Inhibition of the Carboxyl Methylation and Catalysis of Protein Phosphatase-2A in Insulin-Secreting Cells: Protection by Divalent Cations. Bioscience Reports, 1998, 18, 171-186.	2.4	12
86	Interleukin- $1\hat{l}^2$ induces posttranslational carboxymethylation and alterations in subnuclear distribution of lamin B in insulin-secreting RINm5F cells. American Journal of Physiology - Cell Physiology, 2004, 287, C1152-C1162.	4.6	12
87	Protein farnesylation is requisite for mitochondrial fuel-induced insulin release. Islets, 2012, 4, 74-77.	1.8	12
88	Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic \hat{l}^2 -cells. Molecular and Cellular Endocrinology, 2016, 424, 1-11.	3.2	12
89	Paradoxical regulation of glucose-induced Rac1 activation and insulin secretion by RhoGDl \hat{I}^2 in pancreatic \hat{I}^2 -cells. Small GTPases, 2021, 12, 114-121.	1.6	12
90	The stimulus-secretion coupling of glucose-induced insulin release. XLIII. Na-Ca countertransport mediated by pancreatic islet native ionophores. Journal of Inorganic Biochemistry, 1980, 13, 179-188.	3.5	11

#	Article	IF	Citations
91	Ionophore-mediated Ca2+ countertransport: role of Na+, Li+ or H+ gradient. Molecular and Cellular Biochemistry, 1980, 30, 67-70.	3.1	11
92	Evidence for the Carboxyl Methylation of Nuclear Lamin-B in the Pancreatic \hat{l}^2 Cell. Biochemical and Biophysical Research Communications, 2000, 268, 249-254.	2.1	11
93	Further Evidence for the Regulation of Acetyl-CoA Carboxylase Activity by a Glutamate- and Magnesium-Activated Protein Phosphatase in the Pancreatic \hat{I}^2 Cell: Defective Regulation in the Diabetic GK Rat Islet. Endocrine, 2005, 26, 071-078.	2.2	11
94	Nm23-H1 Regulates Glucose-Stimulated Insulin Secretion in Pancreatic \hat{l}^2 -Cells via Arf6-Rac1 Signaling Axis. Cellular Physiology and Biochemistry, 2013, 32, 533-541.	1.6	11
95	A lack of â€~glue' misplaces <scp>Rab27A</scp> to cause islet dysfunction in diabetes. Journal of Pathology, 2016, 238, 375-377.	4.5	11
96	The Two Faces of Protein Palmitoylation in Islet β-Cell Function: Potential Implications in the Pathophysiology of Islet Metabolic Dysregulation and Diabetes. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2013, 7, 203-212.	0.6	11
97	P-Rex1 Mediates Glucose-Stimulated Rac1 Activation and Insulin Secretion in Pancreatic β-Cells. Cellular Physiology and Biochemistry, 2020, 54, 1218-1230.	1.6	10
98	Î ³ -glutamyltranspeptidase activity in pancreatic islets. FEBS Letters, 1981, 125, 57-59.	2.8	9
99	Enzymes of phospholipid metabolism in rat pancreatic islets: Subcellular distribution and the effect of glucose and calcium. Journal of Cellular Biochemistry, 1986, 32, 143-150.	2.6	9
100	Erythrocyte sodium-potassium ATPase activity and thiol metabolism in genetically hyperglycemic mice. Metabolism: Clinical and Experimental, 1992, 41, 160-164.	3.4	9
101	Regulatory roles for nm23/nucleoside diphosphate kinase-like enzymes in insulin secretion from the pancreatic islet beta cell. Journal of Bioenergetics and Biomembranes, 2006, 38, 227-232.	2.3	9
102	Localization of a nuclear serine/threonine protein phosphatase in insulin-secreting INS-1 cells: potential regulation by IL- $1\hat{l}^2$. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1401-1411.	4.9	9
103	Depletion of the catalytic subunit of protein phosphatase-2A (PP2Ac) markedly attenuates glucose-stimulated insulin secretion in pancreatic \hat{l}^2 -cells. Endocrine, 2007, 31, 248-253.	2.2	9
104	Phagocytic NADPH Oxidase Links ARNO-Arf6 Signaling Pathway in Glucose-Stimulated Insulin Secretion from the Pancreatic $\ddot{\imath}_{2}$ /2-Cell. Cellular Physiology and Biochemistry, 2012, 30, 1351-1362.	1.6	9
105	Inappropriate movement of Rac1 contributes to glucotoxicity of the islet \hat{l}^2 -cell. Cell Cycle, 2017, 16, 1387-1388.	2.6	9
106	Kinome Profiling Reveals Abnormal Activity of Kinases in Skeletal Muscle From Adults With Obesity and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 644-659.	3.6	9
107	Biology and Regulatory Roles of Nuclear Lamins in Cellular Function and Dysfunction. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2015, 9, 111-120.	0.6	9
108	Differential regulation by fatty acids of protein histidine phosphorylation in rat pancreatic islets. Molecular and Cellular Biochemistry, 2004, 266, 175-182.	3.1	8

#	Article	IF	CITATIONS
109	siRNA-mediated depletion of endogenous protein phosphatase 2Acî± markedly attenuates ceramide-activated protein phosphatase activity in insulin-secreting INS-832/13 cells. Biochemical and Biophysical Research Communications, 2006, 348, 649-652.	2.1	8
110	Isoprenylcysteine carboxyl methyltransferase facilitates glucose-induced Rac1 activation, ROS generation and insulin secretion in INS 832/13 β-cells. Islets, 2011, 3, 48-57.	1.8	8
111	Novel Role of GPR35 (G-Protein–Coupled Receptor 35) in the Regulation of Endothelial Cell Function and Blood Pressure. Hypertension, 2021, 78, 816-830.	2.7	8
112	Evidence for phosphorylation of pancreatic islet pyruvate kinase. Metabolism: Clinical and Experimental, 1985, 34, 600-603.	3.4	7
113	[20] Subcellular distribution and posttranslational modifications of GTP-binding proteins in insulin-secreting cells. Methods in Neurosciences, 1996, 29, 298-318.	0.5	7
114	A farnesylated G-protein suppresses Akt phosphorylation in INS 832/13 cells and normal rat islets: Regulation by pertussis toxin and PGE2. Biochemical Pharmacology, 2011, 81, 1237-1247.	4.4	7
115	GTP and Its Binding Proteins in the Regulation of Insulin Exocytosis. , 1994, , 249-283.		7
116	PhospholipidN-methylation in diabetic erythrocytes: Effects on membrane Na+, K+ ATPase activity. Cell Biochemistry and Function, 1992, 10, 95-101.	2.9	6
117	Roles of GTP and Rho GTPases in pancreatic islet beta cell function and dysfunction. Small GTPases, 2021, 12, 323-335.	1.6	6
118	RhoG-Rac1 Signaling Pathway Mediates Metabolic Dysfunction of the Pancreatic Beta-Cells Under Chronic Hyperglycemic Conditions Cellular Physiology and Biochemistry, 2021, 55, 180-192.	1.6	6
119	Underappreciated roles for Rho GDP dissociation inhibitors (RhoGDIs) in cell function: Lessons learned from the pancreatic islet \hat{l}^2 -cell. Biochemical Pharmacology, 2022, 197, 114886.	4.4	6
120	GTP-binding protein-independent potentiation by mastoparan of IL- $1\hat{A}$ -induced nitric oxide release from insulin-secreting HIT-T15 cells. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 145-148.	4.9	5
121	Potential roles of PP2A-Rac1 signaling axis in pancreatic \hat{l}^2 -cell dysfunction under metabolic stress: Progress and promise. Biochemical Pharmacology, 2020, 180, 114138.	4.4	5
122	CARD9 Mediates Pancreatic Islet Beta-Cell Dysfunction Under the Duress of Hyperglycemic Stress. Cellular Physiology and Biochemistry, 2022, 56, 120-137.	1.6	5
123	Stimulation of phospholipid methylation by glucose in pancreatic islets. Biochemical and Biophysical Research Communications, 1984, 122, 706-711.	2.1	4
124	Metformin Increases Protein Phosphatase 2A Activity in Primary Human Skeletal Muscle Cells Derived from Lean Healthy Participants. Journal of Diabetes Research, 2021, 2021, 1-6.	2.3	4
125	Multiple Guanine Nucleotide Exchange Factors Mediate Glucose-Induced Rac1 Activation and Insulin Secretion: Is It Precise Regulatory Control or a Case of Two Peas from the Same Pod?. ACS Pharmacology and Translational Science, 2021, 4, 1702-1704.	4.9	4
126	Calcium-activated factors in pancreatic islets that inhibit actin polymerization. Archives of Biochemistry and Biophysics, 1982, 219, 459-462.	3.0	3

#	Article	IF	CITATIONS
127	Protein histidine [de]phosphorylation in insulin secretion: abnormalities in models of impaired insulin secretion. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 383-390.	3.0	3
128	CARD9 mediates glucose-stimulated insulin secretion in pancreatic beta cells. Biochemical Pharmacology, 2021, 192, 114670.	4.4	3
129	Activation of pancreatic islet myosin ATPase by ATP and actin. Biochemical Medicine, 1985, 33, 362-366.	0.5	2
130	Subcellular Localization and Characterization of Nucleoside Diphosphate Kinase in Rat Retina: Effect of Diabetes. Bioscience Reports, 1998, 18, 187-198.	2.4	2
131	Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic \hat{l}^2 cell. Biochemical Pharmacology, 2008, 75, 335-345.	4.4	1
132	On a sugary-relationship between caspases and lamins. Cell Cycle, 2014, 13, 3787-3788.	2.6	1
133	Deoxysphingolipids: Â-Cell, Beware of These New Kids on the Block. Diabetes, 2014, 63, 1191-1193.	0.6	1