
Martin Lascoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glacial Refugia: Hotspots But Not Melting Pots of Genetic Diversity. Science, 2003, 300, 1563-1565.	6.0	1,569
2	Ecological genomics of local adaptation. Nature Reviews Genetics, 2013, 14, 807-820.	7.7	1,099
3	The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Scientific Data, 2020, 7, 1.	2.4	830
4	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	4.7	303
5	Genomic insights into salt adaptation in a desert poplar. Nature Communications, 2013, 4, 2797.	5.8	286
6	Multilocus Patterns of Nucleotide Diversity, Linkage Disequilibrium and Demographic History of Norway Spruce [Picea abies (L.) Karst]. Genetics, 2006, 174, 2095-2105.	1.2	241
7	Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics, 2017, 49, 904-912.	9.4	221
8	Recent speciation of <i>Capsella rubella</i> from <i>Capsella grandiflora</i> , associated with loss of self-incompatibility and an extreme bottleneck. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5246-5251.	3.3	204
9	Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (<i>Picea abies</i>). Genetics, 2012, 191, 865-881.	1.2	195
10	Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species. Molecular Biology and Evolution, 2017, 34, 1417-1428.	3.5	142
11	Joint analysis of demography and selection in population genetics: where do we stand and where could we go?. Molecular Ecology, 2012, 21, 28-44.	2.0	138
12	Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid <i>Capsella bursa-pastoris</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2806-2811.	3.3	128
13	Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E236-E243.	3.3	126
14	Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci. Molecular Biology and Evolution, 2010, 27, 1001-1014.	3.5	113
15	Impact of Ice Ages on the genetic structure of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 197-207.	1.8	111
16	Polyploid Speciation Did Not Confer Instant Reproductive Isolation in Capsella (Brassicaceae). Molecular Biology and Evolution, 2008, 25, 1472-1481.	3.5	93
17	High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe. PLoS ONE, 2014, 9, e85130.	1.1	92
18	Direction and extent of organelle DNA introgression between two spruce species in the Qinghaiâ€ībetan Plateau. New Phytologist, 2011, 192, 1024-1033.	3.5	88

#	Article	IF	CITATIONS
19	Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nature Plants, 2018, 4, 352-357.	4.7	81
20	Phylogenetic relationships of <i>Betula</i> species (Betulaceae) based on nuclear <i>ADH</i> and chloroplast <i>matK</i> sequences. American Journal of Botany, 2004, 91, 1834-1845.	0.8	76
21	POPULATION GENETIC EVIDENCE FOR COMPLEX EVOLUTIONARY HISTORIES OF FOUR HIGH ALTITUDE JUNIPER SPECIES IN THE QINGHAI-TIBETAN PLATEAU. Evolution; International Journal of Organic Evolution, 2012, 66, 831-845.	1.1	70
22	Multispecies genetic structure and hybridization in the <i>Betula</i> genus across Eurasia. Molecular Ecology, 2017, 26, 589-605.	2.0	67
23	Contrasting demographic history and population structure in <i>Capsella rubella</i> and <i>Capsella grandiflora</i> , two closely related species with different mating systems. Molecular Ecology, 2011, 20, 3306-3320.	2.0	63
24	Naturally Occurring Indel Variation in the <i>Brassica nigra COL1</i> Gene Is Associated With Variation in Flowering Time. Genetics, 2002, 161, 299-306.	1.2	63
25	Nuclear and cytoplasmic variation within and between Eurasian <i>Larix</i> (Pinaceae) species. American Journal of Botany, 2003, 90, 1113-1123.	0.8	61
26	Southern montane populations did not contribute to the recolonization of <scp>W</scp> est <scp>S</scp> iberian <scp>P</scp> lain by <scp>S</scp> iberian larch (<i><scp>L</scp>arix sibirica</i>): a rangeâ€wide analysis of cytoplasmic markers. Molecular Ecology, 2013, 22, 4958-4971.	2.0	61
27	Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms and angiosperms. BMC Genomics, 2012, 13, 589.	1.2	60
28	Cytoplasmic DNA variation and biogeography of <i>Larix</i> Mill. in Northeast Asia. Molecular Ecology, 2010, 19, 1239-1252.	2.0	59
29	The extent and meaning of hybridization and introgression between Siberian spruce (<i>Picea) Tj ETQq1 1 0.7843 Molecular Ecology, 2016, 25, 2773-2789.</i>	314 rgBT 2.0	Overlock 10 54
30	A Picea abies Linkage Map Based on SNP Markers Identifies QTLs for Four Aspects of Resistance to Heterobasidion parviporum Infection. PLoS ONE, 2014, 9, e101049.	1.1	52
31	Investigating Population History Using Temporal Genetic Differentiation. Molecular Biology and Evolution, 2014, 31, 2516-2527.	3.5	50
32	Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolutionary Applications, 2019, 12, 1539-1551.	1.5	49
33	Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity, 1999, 82, 193-204.	1.2	48
34	Genetic relationship among Eurasian and American Larix species based on allozymes. Heredity, 1999, 83, 62-70.	1.2	48
35	Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmic and nuclear DNA. Molecular Phylogenetics and Evolution, 2003, 27, 173-184.	1.2	43
36	Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genetics, 2019, 15, e1007949.	1.5	42

#	Article	IF	CITATIONS
37	Bayesian inference of evolutionary history from chloroplast microsatellites in the cosmopolitan weed Capsella bursa-pastoris (Brassicaceae). Molecular Ecology, 2005, 14, 4221-4233.	2.0	41
38	Clinal Variation at Phenology-Related Genes in Spruce: Parallel Evolution in FTL2 and Gigantea?. Genetics, 2014, 197, 1025-1038.	1.2	41
39	Post-glacial history and introgression in Abies (Pinaceae) species of the Russian Far East inferred from both nuclear and cytoplasmic markers. Journal of Biogeography, 2011, 38, 326-340.	1.4	40
40	Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nature Communications, 2018, 9, 4242.	5.8	40
41	Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus <i>Neurospora tetrasperma</i> . Genome Research, 2016, 26, 486-498.	2.4	39
42	The influence of population structure on gene expression and flowering time variation in the ubiquitous weed <i><scp>C</scp>apsella bursaâ€pastoris</i> (Brassicaceae). Molecular Ecology, 2016, 25, 1106-1121.	2.0	36
43	Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications, 2019, 12, 1946-1959.	1.5	36
44	Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe. PLoS ONE, 2016, 11, e0158216.	1.1	34
45	Different alleles of a gene encoding leucoanthocyanidin reductase (PaLAR3) influence resistance against the fungus Heterobasidion parviporum in Picea abies. Plant Physiology, 2016, 171, pp.00685.2016.	2.3	34
46	Genome-wide analyses of introgression between two sympatric Asian oak species. Nature Ecology and Evolution, 2022, 6, 924-935.	3.4	32
47	From America to Eurasia: a multigenomes history of the genus Abies. Molecular Phylogenetics and Evolution, 2018, 125, 14-28.	1.2	31
48	Population structure of a riparian willow species, Salix viminalis L. Genetical Research, 1996, 68, 45-54.	0.3	30
49	The infinite island model with sex-differentiated gene flow. Heredity, 1998, 81, 63-68.	1.2	30
50	Polymorphism and Divergence in Two Willow Species, <i>Salix viminalis</i> L. and <i>Salix schwerinii</i> E. Wolf. G3: Genes, Genomes, Genetics, 2011, 1, 387-400.	0.8	30
51	Cytoplasmic DNA variation does not support a recent contribution of Pinus sylvestris L. from the Caucasus to the main range. Tree Genetics and Genomes, 2020, 16, 1.	0.6	30
52	Genetic and morphological evidence for introgression between three species of willows. BMC Evolutionary Biology, 2015, 15, 193.	3.2	29
53	Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biology, 2021, 22, 179.	3.8	29
54	ldentifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in <i>Picea abies</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1979-1989.	0.8	28

#	Article	IF	CITATIONS
55	The Pleistocene demography of an alpine juniper of the Qinghai-Tibetan Plateau: tabula rasa, cryptic refugia or something else?. Journal of Biogeography, 2011, 38, 31-43.	1.4	27
56	Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris). PLoS Genetics, 2019, 15, e1008131.	1.5	27
57	Distribution of Long-Range Linkage Disequilibrium and Tajima's D Values in Scandinavian Populations of Norway Spruce (<i>Picea abies</i>). G3: Genes, Genomes, Genetics, 2013, 3, 795-806.	0.8	26
58	An introgressed gene causes meiotic drive in <i>Neurospora sitophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
59	From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?. Genetics, 2020, 214, 1005-1018.	1.2	25
60	Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India. Conservation Genetics, 2017, 18, 1-15.	0.8	24
61	Genome-wide evolutionary response of European oaks during the Anthropocene. Evolution Letters, 2022, 6, 4-20.	1.6	24
62	Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (<i>Populus ilicifolia</i>). Plant Journal, 2020, 103, 430-442.	2.8	23
63	Sequence Variation and Haplotype Structure at the Putative Flowering-Time Locus COL1 of Brassica nigra. Molecular Biology and Evolution, 2002, 19, 1474-1482.	3.5	22
64	Flowering time and transcriptome variation in <i>Capsella bursaâ€pastoris</i> (Brassicaceae). New Phytologist, 2012, 194, 676-689.	3.5	22
65	Genomic insights on the contribution of balancing selection and local adaptation to the longâ€ŧerm survival of a widespread living fossil tree, <i>Cercidiphyllum japonicum</i> . New Phytologist, 2020, 228, 1674-1689.	3.5	22
66	Patterns of Nucleotide Diversity at Photoperiod Related Genes in Norway Spruce [Picea abies (L.) Karst.]. PLoS ONE, 2014, 9, e95306.	1.1	20
67	A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Molecular Phylogenetics and Evolution, 2014, 78, 136-147.	1.2	20
68	Using the Ornstein–Uhlenbeck process to model the evolution of interacting populations. Journal of Theoretical Biology, 2017, 429, 35-45.	0.8	18
69	Title is missing!. European Journal of Plant Pathology, 2001, 107, 871-881.	0.8	17
70	Past demography in forest trees: what can we learn from nuclear DNA sequences that we do not already know?. Plant Ecology and Diversity, 2008, 1, 209-215.	1.0	17
71	Allorecognition genes drive reproductive isolation in Podospora anserina. Nature Ecology and Evolution, 2022, 6, 910-923.	3.4	15
72	RAPD-derived, PCR-based mitochondrial markers for Larix species and their usefulness in phylogeny. Conservation Genetics, 2006, 7, 621-625.	0.8	13

#	Article	IF	CITATIONS
73	Competitive ability of Capsella species with different mating systems and ploidy levels. Annals of Botany, 2018, 121, 1257-1264.	1.4	13
74	Hunting for Beneficial Mutations: Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations. Genome Biology and Evolution, 2022, 14, .	1.1	13
75	Shift in ecological strategy helps marginal populations of shepherd's purse (<i>Capsella) Tj ETQq1 1 0.784314 Sciences, 2020, 287, 20200463.</i>	rgBT /Overl 1.2	ock 10 Tf 50 12
76	UNPREDICTABILITY OF CORRELATED RESPONSE TO SELECTION: LINKAGE AND INITIAL FREQUENCY ALSO MATTER. Evolution; International Journal of Organic Evolution, 1997, 51, 1394-1400.	1.1	11
77	Demographic expansion and genetic load of the halophyte model plant <i>Eutrema salsugineum</i> . Molecular Ecology, 2018, 27, 2943-2955.	2.0	11
78	Genetics to the rescue: managing forests sustainably in a changing world. Tree Genetics and Genomes, 2020, 16, 1.	0.6	11
79	The GenTree Leaf Collection: Inter―and intraspecific leaf variation in seven forest tree species in Europe. Global Ecology and Biogeography, 2021, 30, 590-597.	2.7	11
80	Origin and demographic history of the endemic Taiwan spruce (<i>Picea morrisonicola</i>). Ecology and Evolution, 2013, 3, 3320-3333.	0.8	10
81	Homeologueâ€specific expression divergence in the recently formed tetraploid <i>Capsella bursaâ€pastoris</i> (Brassicaceae). New Phytologist, 2018, 220, 624-635.	3.5	10
82	The â€~New Wave' in plant demographic inference: more loci and more individuals. Molecular Ecology, 2010, 19, 1075-1078.	2.0	9
83	Nuclear and cytoplasmic genetic diversity reveals long-term population decline in Abies semenovii, an endemic fir of central Asia. Canadian Journal of Forest Research, 2012, 42, 2142-2152.	0.8	9
84	The infinite island model with sex-differentiated gene flow. Heredity, 1998, 81, 63-68.	1.2	8
85	Growth of 24 fullâ€sib families of <i>Pinus sylvestris</i> L. At six relative nutrient addition rates. Scandinavian Journal of Forest Research, 1994, 9, 115-123.	0.5	7
86	Polymorphism and Divergence at Three Duplicate Genes in Brassica nigra. Journal of Molecular Evolution, 2008, 66, 581-590.	0.8	7
87	A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries. Tree Genetics and Genomes, 2011, 7, 1277-1285.	0.6	7
88	Exact simulation of conditioned Wright–Fisher models. Journal of Theoretical Biology, 2014, 363, 419-426.	0.8	6
89	What does the distribution of fitness effects of new mutations reflect? Insights from plants. New Phytologist, 2022, 233, 1613-1619.	3.5	6
90	One step beyond lethal equivalents: characterization of deleterious loci in the rapid cycling Brassica rapa L. base population. , 1998, 104, 161-170.		5

#	Article	IF	CITATIONS
91	Low isozyme diversity in Nordic and central European populations of Vicia pisiformis and V. dumetorum (Fabaceae). Nordic Journal of Botany, 1999, 19, 643-652.	0.2	5
92	Amount of Information Needed for Model Choice in Approximate Bayesian Computation. PLoS ONE, 2014, 9, e99581.	1.1	5
93	Population structure and the rate of evolution. Journal of Theoretical Biology, 2015, 365, 486-495.	0.8	5
94	Clinal variation in growth cessation and FTL2 expression in Siberian spruce. Tree Genetics and Genomes, 2019, 15, 1.	0.6	4
95	The relative role of plasticity and demographic history in <i>Capsella bursa-pastoris</i> : a common garden experiment in Asia and Europe. AoB PLANTS, 2022, 14, .	1.2	4
96	The Hypomethylated Partial Restriction (HMPR) method reduces the repetitive content of genomic libraries in Norway spruce (Picea abies). Tree Genetics and Genomes, 2013, 9, 601-612.	0.6	3
97	Modeling a trait-dependent diversification process coupled with molecular evolution on a random species tree. Journal of Theoretical Biology, 2019, 461, 189-203.	0.8	3
98	The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience, 2021, 10, .	3.3	3
99	An informational transition in conditioned Markov chains: Applied to genetics and evolution. Journal of Theoretical Biology, 2016, 402, 158-170.	0.8	2
100	Probability of Identity by Descent in Metapopulations. Genetics, 1999, 152, 1217-1228.	1.2	2
101	Competitive ability depends on mating system and ploidy level across <i>Capsella</i> species. Annals of Botany, 2022, 129, 697-708.	1.4	2
102	A Study of Deleterious Gene Structure in Plants Using Markov Chain Monte Carlo. Biometrics, 1999, 55, 376-386.	0.8	1
103	Analysis of diversity-dependent species evolution using concepts in population genetics. Journal of Mathematical Biology, 2021, 82, 22.	0.8	0