
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of tool wear width size and optimization of cutting parameters in milling process using novel ANFIS-PSO method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236, 111-122.	1.5	8
2	Experimental investigation and optimization of femtosecond laser processing parameters of silicon carbide–based on response surface methodology. Ceramics International, 2022, 48, 14507-14517.	2.3	13
3	An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining. Journal of Intelligent Manufacturing, 2021, 32, 313-327.	4.4	32
4	Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 2021, 32, 77-90.	4.4	63
5	Evolution of micro/nano-structural arrays on crystalline silicon carbide by femtosecond laser ablation. Materials Science in Semiconductor Processing, 2021, 121, 105299.	1.9	26
6	Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. Journal of Materials Processing Technology, 2021, 290, 116976.	3.1	192
7	An improved case-based reasoning method and its application to predict machining performance. Soft Computing, 2021, 25, 5683-5697.	2.1	7
8	Assessment of cyclic utilization of coated cemented carbide inserts for turning of Inconel 718. International Journal of Advanced Manufacturing Technology, 2021, 112, 1583-1592.	1.5	0
9	Prediction of cutting power and surface quality, and optimization of cutting parameters using new inference system in high-speed milling process. Advances in Manufacturing, 2021, 9, 388-402.	3.2	17
10	The research of tool wear criterion in micro cutting using the elastic recovery ratio of high-strength elastic alloy 3J33B. International Journal of Advanced Manufacturing Technology, 2021, 114, 1767-1776.	1.5	2
11	Mechanisms and predictive force models for machining with rake face textured cutting tools under orthogonal cutting conditions. International Journal of Mechanical Sciences, 2021, 195, 106246.	3.6	17
12	Material removal mechanisms of ceramics turned by abrasive waterjet (AWJ) using a novel approach. Ceramics International, 2021, 47, 15165-15172.	2.3	15
13	Fabrication of high-aspect-ratio grooves with high surface quality by using femtosecond laser. Industrial Lubrication and Tribology, 2021, 73, 718-726.	0.6	7
14	Strip formation mechanisms and characteristics models in 3D printing of viscous polymer inks. Journal of Manufacturing Processes, 2021, 69, 331-339.	2.8	2
15	The mechanisms of high-efficiency grinding for micro/meso-structural arrays on ceramic moulds through an innovative wheel truing technology. Ceramics International, 2021, 47, 27624-27638.	2.3	8
16	Mechanisms and predictive models for the erosion process of super hard and brittle materials by a vibration-assisted slurry jet. International Journal of Mechanical Sciences, 2021, 211, 106794.	3.6	10
17	An investigation of recast behavior in laser ablation of 4H-silicon carbide wafer. Materials Science in Semiconductor Processing, 2020, 105, 104701.	1.9	28
18	Removal mechanism and surface quality of crystal semiconductor materials in scratching tests with Berkovich indenter. Materials Science in Semiconductor Processing, 2020, 105, 104746.	1.9	12

#	Article	IF	CITATIONS
19	Nanomechanical characterization of RB-SiC ceramics based on nanoindentation and modelling of the ground surface roughness. Ceramics International, 2020, 46, 6243-6253.	2.3	26
20	Influence of novel sintering process on the densification and microstructures of ceramic composite materials. Ceramics International, 2020, 46, 6733-6737.	2.3	5
21	Determination of the minimum chip thickness and the effect of the plowing depth on the residual stress field in micro-cutting of 18 Ni maraging steel. International Journal of Advanced Manufacturing Technology, 2020, 106, 345-355.	1.5	11
22	A comprehensive method for selecting cutting tool materials. International Journal of Advanced Manufacturing Technology, 2020, 110, 229-240.	1.5	22
23	Mechanisms of enhancing the machining performance in micro abrasive waterjet drilling of hard and brittle materials by vibration assistance. International Journal of Machine Tools and Manufacture, 2020, 151, 103528.	6.2	19
24	A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 2020, 261, 121160.	4.6	38
25	Machinability investigations on high-speed drilling of aluminum reinforced with silicon carbide metal matrix composites. International Journal of Advanced Manufacturing Technology, 2020, 108, 1601-1611.	1.5	8
26	Design and fabrication of graded cBN tool materials through high temperature high pressure method. Journal of Alloys and Compounds, 2020, 832, 154937.	2.8	8
27	Design and Characterization of Hydroxyapatite Scaffolds Fabricated by Stereolithography for Bone Tissue Engineering Application. Procedia CIRP, 2020, 89, 170-175.	1.0	21
28	Grinding performance and tribological behavior in solid lubricant assisted grinding of glass-ceramics. Journal of Manufacturing Processes, 2020, 51, 31-43.	2.8	19
29	Frequent promoter methylation of HOXD10 in endometrial carcinoma and its pathological significance. Oncology Letters, 2020, 19, 3602-3608.	0.8	5
30	An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets. Machining Science and Technology, 2019, 23, 19-38.	1.4	25
31	Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. European Journal of Pharmaceutical Sciences, 2019, 139, 105036.	1.9	34
32	Cyclin‑dependent kinase subunit 2 overexpression promotes tumor progression and predicts poor prognosis in uterine leiomyosarcoma. Oncology Letters, 2019, 18, 2845-2852.	0.8	2
33	Surface quality evaluation of single crystal 4H-SiC wafer machined by hybrid laser-waterjet: Comparing with laser machining. Materials Science in Semiconductor Processing, 2019, 93, 238-251.	1.9	23
34	Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 2019, 45, 14908-14920.	2.3	326
35	On the relations between the specific cutting energy and surface generation in micro-milling of maraging steel. International Journal of Advanced Manufacturing Technology, 2019, 104, 585-598.	1.5	11
36	Study on surface integrity of compacted graphite iron milled by cemented carbide tools and ceramic tools. International Journal of Advanced Manufacturing Technology, 2019, 103, 4123-4134.	1.5	16

#	Article	IF	CITATIONS
37	Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material. International Journal of Mechanical Sciences, 2019, 157-158, 243-253.	3.6	24
38	Design and Simulation of Flow Field for Bone Tissue Engineering Scaffold Based on Triply Periodic Minimal Surface. Chinese Journal of Mechanical Engineering (English Edition), 2019, 32, .	1.9	15
39	Optimization of energy consumption in coating removal for recycling scrap coated cemented carbide tools using hybrid laser-waterjet. Journal of Cleaner Production, 2019, 229, 104-114.	4.6	8
40	A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. International Journal of Extreme Manufacturing, 2019, 1, 012006.	6.3	21
41	Enhancing the machining performance by cutting tool surface modifications: a focused review. Machining Science and Technology, 2019, 23, 477-509.	1.4	40
42	Cutting performance and crack self-healing mechanism of a novel ceramic cutting tool in dry and high-speed machining of Inconel 718. International Journal of Advanced Manufacturing Technology, 2019, 102, 3431-3438.	1.5	20
43	The Olfactory Receptor Family 2, Subfamily T, Member 6 (OR2T6) Is Involved in Breast Cancer Progression via Initiating Epithelial-Mesenchymal Transition and MAPK/ERK Pathway. Frontiers in Oncology, 2019, 9, 1210.	1.3	16
44	Impact characteristics and stagnation formation on a solid surface by a supersonic abrasive waterjet. International Journal of Extreme Manufacturing, 2019, 1, 045004.	6.3	6
45	Dynamic response of ceramic material subjected to impact of hard particle. Materials Research Express, 2019, 6, 045203.	0.8	2
46	Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceramics International, 2019, 45, 3902-3909.	2.3	61
47	Investigation on chip formation and surface integrity in micro end milling of maraging steel. International Journal of Advanced Manufacturing Technology, 2019, 102, 1973-1984.	1.5	18
48	Overexpression of CD59 inhibits apoptosis of T-acute lymphoblastic leukemia via AKT/Notch1 signaling pathway. Cancer Cell International, 2019, 19, 9.	1.8	11
49	Investigation and modeling of microgrooves generated on diamond grinding wheel by abrasive waterjet based on Box–Behnken experimental design. International Journal of Advanced Manufacturing Technology, 2019, 100, 321-332.	1.5	16
50	Estimation of tool life and cutting burr in high speed milling of the compacted graphite iron by DE based adaptive neuro-fuzzy inference system. Mechanical Sciences, 2019, 10, 243-254.	0.5	2
51	Experimental study of surface integrity and fatigue life in the face milling of inconel 718. Frontiers of Mechanical Engineering, 2018, 13, 243-250.	2.5	22
52	Sintering mechanisms of Al 2 O 3 -based composite ceramic tools having 25% Si 3 N 4 additions. International Journal of Refractory Metals and Hard Materials, 2018, 73, 132-138.	1.7	9
53	Evolution mechanisms of high temperature mechanical properties and microstructures of Al2O3/SiCw/TiCn nanocomposite materials. Journal of Alloys and Compounds, 2018, 737, 46-52.	2.8	22
54	An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics. Ceramics International, 2018, 44, 5636-5645.	2.3	22

#	Article	IF	CITATIONS
55	Processing Characteristics of Vegetable Oil-based Nanofluid MQL for Grinding Different Workpiece Materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 327-339.	2.7	242
56	Predictive modelling of cutting forces in end milling of titanium alloy Ti6Al4V. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 1523-1534.	1.5	13
57	A study of hybrid laser–waterjet micromachining of crystalline germanium. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232, 1903-1917.	1.5	10
58	Crack-healing behavior of Al2O3-TiB2-TiSi2 ceramic material. Ceramics International, 2018, 44, 2132-2137.	2.3	20
59	Histone deacetylase inhibitor SAHA-induced epithelial–mesenchymal transition by upregulating Slug in lung cancer cells. Anti-Cancer Drugs, 2018, 29, 80-88.	0.7	12
60	A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. Journal of Manufacturing Processes, 2018, 31, 156-161.	2.8	28
61	Material removal of single crystal 4H-SiC wafers in hybrid laser-waterjet micromachining process. Materials Science in Semiconductor Processing, 2018, 82, 112-125.	1.9	20
62	Micromachining of 4H-SiC using femtosecond laser. Ceramics International, 2018, 44, 17775-17783.	2.3	31
63	An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals. Measurement: Journal of the International Measurement Confederation, 2018, 127, 356-365.	2.5	68
64	Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining. International Journal of Advanced Manufacturing Technology, 2018, 94, 3741-3755.	1.5	8
65	The wear mechanisms of reaction bonded silicon carbide under abrasive polishing and slurry jet impact conditions. Wear, 2018, 410-411, 156-164.	1.5	35
66	Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium. International Journal of Machine Tools and Manufacture, 2017, 116, 25-39.	6.2	42
67	Fabrication and mechanical properties of Al2O3-SiCw-TiCnp ceramic tool material. Ceramics International, 2017, 43, 10224-10230.	2.3	36
68	Controlled material removal mode and depth of micro cracks in precision grinding of fused silica – A theoretical model and experimental verification. Ceramics International, 2017, 43, 11596-11609.	2.3	37
69	Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 2017, 122, 55-65.	6.2	390
70	Elastic stress field model and micro-crack evolution for isotropic brittle materials during single grit scratching. Ceramics International, 2017, 43, 10726-10736.	2.3	78
71	Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. International Journal of Machine Tools and Manufacture, 2017, 122, 81-97.	6.2	328
72	Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers. Applied Physics Letters, 2017, 110, .	1.5	9

#	Article	IF	CITATIONS
73	Investigation and modelling of hybrid laser-waterjet micromachining of single crystal SiC wafers using response surface methodology. Materials Science in Semiconductor Processing, 2017, 68, 199-212.	1.9	24
74	Effects of sintering temperature and nano Ti(C,N) on the microstructure and mechanical properties of Ti(C,N) cermets cutting tool materials with low Ni-Co. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 705, 98-104.	2.6	32
75	A Study of the Interaction between Abrasive Waterjet and Target by CFD and FEM Method. Key Engineering Materials, 2017, 748, 275-279.	0.4	1
76	Mechanical properties and microstructure of Al2O3-TiB2-TiSi2 ceramic tool material. Ceramics International, 2017, 43, 14192-14199.	2.3	14
77	Theoretical hardness analysis and experimental verification for composite ceramic tool materials. Ceramics International, 2017, 43, 15580-15585.	2.3	8
78	An analytical model for the prediction of temperature distribution and evolution in hybrid laser-waterjet micro-machining. Precision Engineering, 2017, 47, 33-45.	1.8	31
79	An investigation of surface roughness in micro-end-milling of metals. Australian Journal of Mechanical Engineering, 2017, 15, 166-174.	1.5	9
80	Experimental study on a micro-abrasive slurry jet for glass polishing. International Journal of Advanced Manufacturing Technology, 2017, 89, 451-462.	1.5	19
81	An experimental study of the particle velocities in abrasive waterjets. International Journal of Abrasive Technology, 2017, 8, 147.	0.2	2
82	Superficial Residual Stresses in Face-Milling the 17-4PH Stainless Steel at Various Feed Rates. Key Engineering Materials, 2016, 693, 922-927.	0.4	1
83	A Hybrid Machining Database System Using Case-Based Reasoning and Fuzzy Technology. Key Engineering Materials, 2016, 693, 1805-1810.	0.4	0
84	Effects of heating rate and metal binder on the microstructure and mechanical properties of self-diffusion gradient cermet composite tool materials. Journal of Alloys and Compounds, 2016, 677, 190-203.	2.8	9
85	An experimental investigation of micro-machinability of aluminum alloy 2024 using Ti(C7N3)-based cermet micro end-mill tools. Journal of Materials Processing Technology, 2016, 235, 13-27.	3.1	30
86	Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. International Journal of Advanced Manufacturing Technology, 2016, 87, 2673-2682.	1.5	25
87	A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing. International Journal of Advanced Manufacturing Technology, 2016, 87, 3091-3103.	1.5	13
88	Laser-Assisted Waterjet Micro-Grooving of Silicon Wafers for Minimizing Heat Affected Zone. Materials Science Forum, 2016, 861, 133-138.	0.3	1
89	Microstructure and formation process of gradient structure of self-diffusion composite tool materials. International Journal of Nanomanufacturing, 2016, 12, 55.	0.3	0
90	Crack-free ductile mode grinding of fused silica under controllable dry grinding conditions. International Journal of Machine Tools and Manufacture, 2016, 109, 126-136.	6.2	66

#	Article	IF	CITATIONS
91	An Experimental Study on Finish Dry Milling of AISI 321 Stainless Steel. Materials Science Forum, 2016, 861, 26-31.	0.3	6
92	Investigation on Material Response to Ultrahigh Velocity Impact on Ceramics by Micro Particle. Tribology Letters, 2016, 64, 1.	1.2	7
93	Laser-Assisted Waterjet Microgrooving of Silicon Nitride Ceramics with near Damage-Free. Materials Science Forum, 2016, 861, 69-74.	0.3	1
94	A New Look into the Loose Particle Impact Process for Ductile Materials. Materials Science Forum, 2016, 874, 213-218.	0.3	3
95	Surface Roughness and Topography Analysis in Precision Milling of 3J33 Maraging Steel. Materials Science Forum, 2016, 874, 497-502.	0.3	4
96	Study on the Simplification of Spiral Bevel Gear Grinding Model. Materials Science Forum, 2016, 861, 108-114.	0.3	1
97	Finite Element Simulation of Minimum Cutting Thickness in Micro-Cutting. Materials Science Forum, 2016, 861, 50-55.	0.3	2
98	Radial-mode abrasive waterjet turning of short carbon–fiber-reinforced plastics. Machining Science and Technology, 2016, 20, 231-248.	1.4	18
99	Sliding behavior and wear mechanism of iron and cobalt-based high-temperature alloys against WC and SiC balls. International Journal of Refractory Metals and Hard Materials, 2016, 59, 40-55.	1.7	14
100	Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel. International Journal of Advanced Manufacturing Technology, 2016, 83, 257-264.	1.5	25
101	On the erosion process on quartz crystals by the impact of multiple high-velocity micro-particles. Tribology International, 2016, 95, 462-474.	3.0	27
102	Characterization of KDP Crystal Surfaces from Single Point Diamond Milling. Advanced Materials Research, 2016, 1136, 271-276.	0.3	1
103	Heat-assisted high efficiency ductile dry grinding of fused silica. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2016, 24, 83-93.	0.2	4
104	In-situ fabricated TiB2 particle-whisker synergistically toughened Ti(C, N)-based ceramic cutting tool material. Chinese Journal of Mechanical Engineering (English Edition), 2015, 28, 338-342.	1.9	7
105	Predictive models for the geometrical characteristics of channels milled by abrasive waterjet. , 2015, ,		1
106	A study of the micro-machining process on quartz crystals using an abrasive slurry jet. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 421-434.	1.5	15
107	Further Development of Oxley's Predictive Force Model for Orthogonal Cutting. Machining Science and Technology, 2015, 19, 86-111.	1.4	16
108	A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. International Journal of Advanced Manufacturing Technology, 2015, 78, 1361-1369.	1.5	41

#	Article	IF	CITATIONS
109	FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. International Journal of Advanced Manufacturing Technology, 2015, 78, 1641-1649.	1.5	23
110	Tool damage and machined-surface quality using hot-pressed sintering Ti(C7N3)/WC/TaC cermet cutting inserts for high-speed turning stainless steels. International Journal of Advanced Manufacturing Technology, 2015, 79, 197-210.	1.5	29
111	Process models for controlled-depth abrasive waterjet milling of amorphous glasses. International Journal of Advanced Manufacturing Technology, 2015, 77, 1177-1189.	1.5	22
112	Analytical modelling of cutting forces in near-orthogonal cutting of titanium alloy Ti6Al4V. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 1122-1133.	1.1	15
113	An experimental study of abrasive waterjet machining of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 2015, 81, 361-369.	1.5	54
114	Fabrication and characterization of Si3N4 reinforced Al2O3-based ceramic tool materials. Ceramics International, 2015, 41, 12798-12804.	2.3	32
115	Effect of boron nitride nanotubes content on mechanical properties and microstructure of Ti(C,N)-based cermets. Ceramics International, 2015, 41, 2813-2818.	2.3	18
116	Impact erosion by high velocity micro-particles on a quartz crystal. Tribology International, 2015, 82, 200-210.	3.0	37
117	Temperature evolution and material removal mechanisms in nanosecond-pulsed laser ablation of polycrystalline diamond. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 1357-1372.	1.5	13
118	Dressing of diamond grinding wheels by abrasive water jet for freeform optical surface grinding. , 2014, , .		2
119	High Efficiency Abrasive Waterjet Dressing of Diamond Grinding Wheel. Advanced Materials Research, 2014, 1017, 243-248.	0.3	8
120	A new method to evaluate the machinability of difficult-to-cut materials. International Journal of Advanced Manufacturing Technology, 2014, 75, 91-96.	1.5	12
121	Analysis of the machining performance and surface integrity in laser milling of polycrystalline diamonds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228, 903-917.	1.5	17
122	Detection and analysis of chatter occurrence in micro-milling process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228, 1359-1371.	1.5	34
123	Dynamic fatigue behavior of Al2O3/TiC micro–nano-composite ceramic tool materials at ambient and high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 64-69.	2.6	16
124	Effects of particulate metallic phase on microstructure and mechanical properties of carbide reinforced alumina ceramic tool materials. Ceramics International, 2014, 40, 2809-2817.	2.3	22
125	Scanning path planning for laser bending of straight tube into curve tube. Optics and Laser Technology, 2014, 56, 43-51.	2.2	12
126	Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. International Journal of Advanced Manufacturing Technology, 2014, 71, 2107-2114.	1.5	57

#	Article	IF	CITATIONS
127	Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceramics International, 2014, 40, 7899-7908.	2.3	86
128	A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing. Ceramics International, 2014, 40, 2305-2313.	2.3	54
129	Microstructure and mechanical properties of TiB2–SiC ceramic composites by Reactive Hot Pressing. International Journal of Refractory Metals and Hard Materials, 2014, 42, 36-41.	1.7	61
130	Study on the synthesis and growth mechanisms of the refractory ZrC whiskers. International Journal of Refractory Metals and Hard Materials, 2014, 42, 116-119.	1.7	23
131	Study on microstructure and its formation mechanism, and mechanical properties of TiB2–TiC laminated Ti(C5N5) composite ceramic cutting tool material. International Journal of Refractory Metals and Hard Materials, 2014, 42, 169-179.	1.7	11
132	Microgrooving of Germanium Wafers Using Laser and Hybrid Laser-Waterjet Technologies. Advanced Materials Research, 2014, 1017, 193-198.	0.3	6
133	Effects of metal phases and carbides on the microstructure and mechanical properties of Ti(C,N)-based cermets cutting tool materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 462-470.	2.6	31
134	Effects of sintering processes on the mechanical properties and microstructure of Ti(C,N)-based cermet cutting tool materials. International Journal of Refractory Metals and Hard Materials, 2014, 47, 71-79.	1.7	36
135	On DEM–CFD study of the dynamic characteristics of high speed micro-abrasive air jet. Powder Technology, 2014, 267, 161-179.	2.1	41
136	Chemical ablation therapy of recurrent mediastinal nodal metastasis in post-radiotherapy cancer patients. Medical Oncology, 2014, 31, 224.	1.2	2
137	Cutting performance and failure mechanisms of TiB2-based ceramic cutting tools in machining hardened Cr12MoV mold steel. International Journal of Advanced Manufacturing Technology, 2014, 70, 495-500.	1.5	12
138	Modelling the cutting forces in micro-end-milling using a hybrid approach. International Journal of Advanced Manufacturing Technology, 2014, 73, 1647-1656.	1.5	38
139	On ultrahigh velocity micro-particle impact on steels – A multiple impact study. Wear, 2014, 309, 52-64.	1.5	33
140	Microstructure and mechanical properties of hot pressed TiB2–SiC composite ceramic tool materials at room and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 108-116.	2.6	49
141	Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates. International Journal of Machine Tools and Manufacture, 2014, 79, 1-16.	6.2	53
142	Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2–TiC+Al2O3 composite ceramic cutting tool materials. Journal of Alloys and Compounds, 2014, 585, 192-202.	2.8	29
143	Effects of TiC content and melt phase on microstructure and mechanical properties of ternary TiB2-based ceramic cutting tool materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 137-143.	2.6	46
144	Study of a hot-pressed sintering preparation of Ti(C7N3)-based composite cermets materials and their performance as cutting tools. Journal of Alloys and Compounds, 2014, 611, 363-371.	2.8	28

#	Article	IF	CITATIONS
145	Effects of geometric structure of twist drill bits and cutting condition on tool life in drilling 42CrMo ultrahigh-strength steel. International Journal of Advanced Manufacturing Technology, 2013, 64, 41-47.	1.5	16
146	Scanning path planning for laser bending of straight tube into coil-shape tube. International Journal of Advanced Manufacturing Technology, 2013, 69, 909-917.	1.5	8
147	Boron Nitride Ultrathin Fibrous Nanonets: One-Step Synthesis and Applications for Ultrafast Adsorption for Water Treatment and Selective Filtration of Nanoparticles. ACS Applied Materials & Interfaces, 2013, 5, 12773-12778.	4.0	81
148	A Surface Roughness Model in Radial-Mode Abrasive Waterjet Turning for High-Tensile Steels. Applied Mechanics and Materials, 2013, 483, 177-181.	0.2	8
149	Preparation of in-situ growth TaC whiskers toughening Al2O3 ceramic matrix composite. International Journal of Refractory Metals and Hard Materials, 2013, 36, 122-125.	1.7	34
150	Reliability of partial ambiguity fixing with multiple GNSS constellations. Journal of Geodesy, 2013, 87, 1-14.	1.6	69
151	Study on in-situ synthesis of ZrB2 whiskers in ZrB2–ZrC matrix powder for ceramic cutting tools. International Journal of Refractory Metals and Hard Materials, 2013, 37, 98-105.	1.7	37
152	In situ synthesis of ZrB2–ZrCx ceramic tool materials toughened by elongated ZrB2 grains. Materials & Design, 2013, 49, 226-233.	5.1	37
153	An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. International Journal of Mechanical Sciences, 2013, 77, 365-376.	3.6	41
154	High temperature mechanical properties of Al2O3/TiC micro–nano-composite ceramic tool materials. Ceramics International, 2013, 39, 8877-8883.	2.3	47
155	Preparation and characterization of Al2O3/TiC micro–nano-composite ceramic tool materials. Ceramics International, 2013, 39, 4253-4262.	2.3	32
156	Orthogonality defect and reduced search-space size for solving integer least-squares problems. GPS Solutions, 2013, 17, 261-274.	2.2	4
157	Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 577, 9-15.	2.6	45
158	Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 385-390.	2.6	134
159	On ultrahigh velocity micro-particle impact on steels—A single impact study. Wear, 2013, 305, 216-227.	1.5	55
160	Study on the Effect of Standoff Distance on Processing Performance of Alumina Ceramics in Two Modes of Abrasive Waterjet Turning Patterns. Advanced Materials Research, 2013, 797, 21-26.	0.3	7
161	Impact Erosion of Quartz Crystals by Micro-Particles in Abrasive Waterjet Micro-Machining. Advanced Materials Research, 2013, 797, 46-51.	0.3	3
162	Kerf Profile Characteristics in Abrasive Air Jet Micromachining. Advanced Materials Research, 2013, 797, 33-38.	0.3	0

#	Article	IF	CITATIONS
163	Microstructure and Mechanical Properties of Al ₂ O ₃ -TaC _w Ceramic Cutting Tool Materials. Advanced Materials Research, 2013, 797, 172-176.	0.3	Ο
164	An Experimental Study on Radial-Mode Abrasive Waterjet Turning of Alumina Ceramics. Advanced Materials Research, 2013, 797, 27-32.	0.3	2
165	A Study on Erosion Performance of Monocrystalline Silicon in Ultrasonic Vibration-Assisted Abrasive Water Jet Machining. Advanced Materials Research, 2013, 797, 39-45.	0.3	1
166	Assessment of cutting forces in high-speed milling of Inconel 718 considering the dynamic effects. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 1581-1595.	1.5	13
167	Laser–material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, 227, 1714-1723.	1.5	15
168	A cutting forces model for milling Inconel 718 alloy based on a material constitutive law. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 1761-1775.	1.1	12
169	Atomistic Simulations of Ultrashort Pulsed Laser Ablation of Polycrystalline Diamond. Current Nanoscience, 2013, 9, 804-811.	0.7	10
170	Cutting Forces and Tool Wear in Dry Milling of Ti6Al4V. Advanced Materials Research, 2012, 565, 454-459.	0.3	2
171	Numerical Simulation on the Sintering Process of Nanocomposite Ceramic Tool Materials. Advanced Materials Research, 2012, 500, 519-524.	0.3	0
172	A Study on the Cross-Sectional Shape of Kerf Cut with Micro Abrasive Air Jet. Advanced Materials Research, 2012, 500, 236-241.	0.3	2
173	Effect of (Ni,Mo) and (W,Ti)C on the Microstructure and Mechanical Properties of TiB ₂ Ceramic Tool Materials. Materials Science Forum, 2012, 723, 233-237.	0.3	7
174	A STUDY OF MICRO-CHANNELING ON GLASSES USING AN ABRASIVE SLURRY JET. Machining Science and Technology, 2012, 16, 547-563.	1.4	24
175	An Experimental Study of the Abrasive Water Jet Micro-Machining Process for Quartz Crystals. Advanced Materials Research, 2012, 565, 339-344.	0.3	3
176	Simulation of Fracture Behavior in the Microstructure of Ceramic Tool Materials. Advanced Materials Research, 2012, 457-458, 89-92.	0.3	1
177	An Experimental Study of the Effect of Cutting Parameters on Micro Milling Process. Advanced Materials Research, 2012, 565, 558-563.	0.3	1
178	Three-dimensional simulation of microstructure evolution for three-phase nano-composite ceramic tool materials. Computational Materials Science, 2012, 65, 254-263.	1.4	5
179	Three Dimensional Monte Carlo Simulation of Microstructure Evolution in Presence of Pores for Three-Phase Nano-Composite Ceramic Tool Materials. Advanced Materials Research, 2012, 457-458, 1567-1572.	0.3	0
180	Crack propagation simulation in microstructure of ceramic tool materials. Computational Materials Science, 2012, 54, 150-156.	1.4	34

#	Article	IF	CITATIONS
181	Modelling of the micro-channelling process on glasses using an abrasive slurry jet. International Journal of Machine Tools and Manufacture, 2012, 53, 118-126.	6.2	44
182	An investigation of hybrid laser–waterjet ablation of silicon substrates. International Journal of Machine Tools and Manufacture, 2012, 56, 39-49.	6.2	58
183	Effects of sintering additives on microstructure and mechanical properties of TiB2–WC ceramic–metal composite tool materials. International Journal of Refractory Metals and Hard Materials, 2012, 30, 91-95.	1.7	38
184	Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials. Materials & Design, 2012, 36, 69-74.	5.1	41
185	Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear, 2012, 292-293, 1-10.	1.5	25
186	Study of Abrasive Jet Micromachining for Brittle Materials. Advanced Science Letters, 2012, 12, 339-342.	0.2	1
187	An Experimental Study of Radial-Mode Abrasive Waterjet Turning of Steels. Materials Science Forum, 2011, 697-698, 166-170.	0.3	9
188	Three dimensional simulation of microstructure evolution for ceramic tool materials. Computational Materials Science, 2011, 50, 3334-3341.	1.4	8
189	ENERGY DEPOSITION AND NON-THERMAL ABLATION IN FEMTOSECOND LASER GROOVING OF SILICON. Machining Science and Technology, 2011, 15, 263-283.	1.4	21
190	Computed success rates of various carrier phase integer estimation solutions and their comparison with statistical success rates. Journal of Geodesy, 2011, 85, 93-103.	1.6	19
191	A study of the flow characteristics in micro-abrasive jets. Experimental Thermal and Fluid Science, 2011, 35, 1097-1106.	1.5	38
192	Laser 3D Machining with Variable Process Parameters. , 2011, , .		0
193	Scanning Path Planning in Laser Bending of Tube Based on Curvature. Advanced Materials Research, 2011, 264-265, 6-11.	0.3	2
194	Experimental Research on the Surface Roughness of Metal Kerf by Abrasive Waterjet Cutting. Advanced Materials Research, 2011, 325, 627-632.	0.3	0
195	The Development of Micro Abrasive Waterjet Machining Technology. Advanced Materials Research, 2011, 188, 733-738.	0.3	2
196	Micro-grooving on quartz crystals by an abrasive air jet. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225, 2161-2173.	1.1	13
197	A Study of Jet Formation for Premixed Slurry Jet Nozzle Using the Discrete Phase Model. Advanced Materials Research, 2011, 325, 638-644.	0.3	3
198	An Experimental Investigation of the Laser Milling Process for Polycrystalline Diamonds. Advanced Materials Research, 2011, 291-294, 810-815.	0.3	6

#	Article	IF	CITATIONS
199	A Kind of Mathematical Solution of Optimization for Turning. Advanced Materials Research, 2011, 411, 149-157.	0.3	0
200	OPTIMIZATION OF CUTTING CONDITIONS IN DRILLING OPERATIONS WITH PLANE RAKE FACED TWIST DRILLS. Machining Science and Technology, 2011, 15, 91-109.	1.4	3
201	Laser Cleaning of Fine Particles on Si-Wafers. , 2011, , .		1
202	A THRESHOLD MODEL FOR LASER CLEANING OF LARGER SILICON WAFERS. Machining Science and Technology, 2011, 15, 415-428.	1.4	5
203	Impact Abrasive Machining. , 2011, , 385-419.		11
204	Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation. Frontiers of Mechanical Engineering in China, 2010, 5, 19-32.	0.4	20
205	Material removal mechanisms of monocrystalline silicon under the impact of high velocity micro-particles. Wear, 2010, 269, 269-277.	1.5	22
206	Heat Absorbing Rate in Laser Drilling of YG8 Alloy. Advanced Materials Research, 2010, 97-101, 4164-4167.	0.3	0
207	Effect of Grinding Wheel Diameter Change on Geometrical Parameters of Ball-Nose End Mill. Advanced Materials Research, 2010, 97-101, 4527-4529.	0.3	1
208	An Experimental Study on the Kerf Characteristics of Silicon Cut with Micro Abrasive Air Jet. Advanced Materials Research, 2010, 135, 13-17.	0.3	3
209	Research and Development of Four Axis Linkage Grinding Simulation System of Ball-Nose End Mill. Key Engineering Materials, 2010, 443, 314-317.	0.4	0
210	Modeling the Material Removal Rate in Micro Abrasive Water Jet Machining of Glasses. Advanced Materials Research, 2010, 135, 370-375.	0.3	4
211	Geometry, specification, and drilling performance of a plane rake faced drill point design. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224, 369-378.	1.1	4
212	A Study on the Abrasive Waterjet Milling Mechanisms of Ceramic Materials. Key Engineering Materials, 2010, 431-432, 261-264.	0.4	3
213	Mechanisms of microhole formation on glasses by an abrasive slurry jet. Journal of Applied Physics, 2009, 105, 044906.	1.1	26
214	Modeling Material Removal in Fracture Erosion for Brittle Materials by Abrasive Waterjet. Advanced Materials Research, 2009, 76-78, 357-362.	0.3	9
215	A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics. Journal of Materials Processing Technology, 2009, 209, 2314-2320.	3.1	51
216	Analysis and modelling of particle velocities in micro-abrasive air jet. International Journal of Machine Tools and Manufacture, 2009, 49, 850-858.	6.2	122

#	Article	IF	CITATIONS
217	Experimental study on abrasive waterjet polishing for hard–brittle materials. International Journal of Machine Tools and Manufacture, 2009, 49, 569-578.	6.2	81
218	Modelling the erosion rate in micro abrasive air jet machining of glasses. Wear, 2009, 266, 968-974.	1.5	75
219	Particle velocity models for ultra-high pressure abrasive waterjets. Journal of Materials Processing Technology, 2009, 209, 4573-4577.	3.1	41
220	Cutting meat with bone using an ultrahigh pressure abrasive waterjet. Meat Science, 2009, 81, 671-677.	2.7	19
221	A Focused Review on Enhancing the Abrasive Waterjet Cutting Performance by Using Controlled Nozzle Oscillation. Key Engineering Materials, 2009, 404, 33-44.	0.4	8
222	ENHANCING THE DEPTH OF CUT IN ABRASIVE WATERJET CUTTING OF ALUMINA CERAMICS BY USING MULTIPASS CUTTING WITH NOZZLE OSCILLATION. Machining Science and Technology, 2009, 13, 76-91.	1.4	15
223	A study of high-performance plane rake faced twist drills. Part II: Predictive force models. International Journal of Machine Tools and Manufacture, 2008, 48, 1286-1295.	6.2	22
224	Modeling and numerical simulation for the machining of helical surface profiles on cutting tools. International Journal of Advanced Manufacturing Technology, 2008, 36, 525-534.	1.5	21
225	Removal of scratch on the surface of MgO single crystal substrate in chemical mechanical polishing process. Applied Surface Science, 2008, 254, 4856-4863.	3.1	14
226	Effect of liquid properties on the stability of an abrasive waterjet. International Journal of Machine Tools and Manufacture, 2008, 48, 1138-1147.	6.2	45
227	A study of high-performance plane rake faced twist drills International Journal of Machine Tools and Manufacture, 2008, 48, 1276-1285.	6.2	40
228	Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools and Manufacture, 2008, 48, 1527-1534.	6.2	111
229	A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Composites Part A: Applied Science and Manufacturing, 2008, 39, 923-929.	3.8	198
230	Abrasive liquid jet as a flexible polishing tool. International Journal of Materials and Product Technology, 2008, 31, 2.	0.1	14
231	Theoretical Model of Surface Roughness for Polishing Super Hard Materials with Abrasive Waterjet. Key Engineering Materials, 2008, 375-376, 465-469.	0.4	8
232	Erosion mechanisms of monocrystalline silicon under a microparticle laden air jet. Journal of Applied Physics, 2008, 104, .	1.1	21
233	A study of laser surface modification for GCr15 steel. International Journal of Materials and Product Technology, 2008, 31, 88.	0.1	3
234	Machinability of glass by abrasive waterjet. International Journal of Materials and Product Technology, 2008, 31, 106.	0.1	7

#	Article	IF	CITATIONS
235	Effect of Nozzle Type and Abrasive on Machinablity in Micro Abrasive Air Jet Machining of Glass. Key Engineering Materials, 2007, 359-360, 404-408.	0.4	8
236	Surface Characteristics of Ceramics Milled with Abrasive Waterjet Technology. Key Engineering Materials, 2007, 329, 335-340.	0.4	7
237	An Experimental Study on Milling Al ₂ O ₃ Ceramics with Abrasive Waterjet. Key Engineering Materials, 2007, 339, 500-504.	0.4	12
238	Simulation of Solid-Liquid Two-Phase Flow Inside and Outside the Abrasive Water Jet Nozzle. Key Engineering Materials, 2007, 339, 453-457.	0.4	2
239	Three-Dimensional Simulation of Liquid-Solid Two-Phase Flow Inside the Abrasive Water Jet Nozzle. Key Engineering Materials, 2007, 329, 329-334.	0.4	1
240	A Study on Erosion Mechanisms of Quartz Crystals Polished by Micro Abrasive Waterjet. Advanced Materials Research, 2007, 24-25, 195-199.	0.3	4
241	Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. International Journal of Mechanical Sciences, 2007, 49, 306-316.	3.6	114
242	Multi-scale and multi-phase nanocomposite ceramic tools and cutting performance. Chinese Journal of Mechanical Engineering (English Edition), 2007, 20, 5.	1.9	12
243	The Effect of High Pressure Abrasive Water Jet Cutting Parameters on Cutting Performance of Granite. Key Engineering Materials, 2006, 304-305, 560-564.	0.4	21
244	Mechanical properties and microstructure of ZrO2–TiN–Al2O3 composite ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 416, 104-108.	2.6	12
245	Guide curve based interpolation scheme of parametric curves for precision CNC machining. International Journal of Machine Tools and Manufacture, 2006, 46, 235-242.	6.2	29
246	A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation. International Journal of Advanced Manufacturing Technology, 2006, 27, 693-702.	1.5	37
247	Fabrication and mechanical properties of Al2O3/Ti(C0.7N0.3) nanocomposites. Materials Research Bulletin, 2006, 41, 1215-1224.	2.7	19
248	Effect of TiN Addition on the Low Temperature Degradation of Ceramic Tool Materials 3Y-TZP. Key Engineering Materials, 2006, 315-316, 40-44.	0.4	1
249	Study on the Multi-Scale Nanocomposite Ceramic Tool Material. Key Engineering Materials, 2006, 315-316, 118-122.	0.4	7
250	Simulation of Gas-Solid-Liquid Three-Phase Flow Inside and Outside the Abrasive Water Jet Nozzle. Materials Science Forum, 2006, 532-533, 833-836.	0.3	2
251	Study on the Multi-Phase and Multi-Scale Nanocomposite Ceramic Tool Material. Materials Science Forum, 2006, 532-533, 245-248.	0.3	1
252	Theoretical Analysis on the Machining Mechanism in Ultrasonic Vibration Abrasive Waterjet. Key Engineering Materials, 2006, 315-316, 127-130.	0.4	4

#	Article	IF	CITATIONS
253	Profile Cutting on Alumina Ceramics by Abrasive Waterjet. Part 1: Experimental Investigation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220, 703-714.	1.1	15
254	Microstructure and Mechanical Properties of Nano-Scale Al ₂ 0 ₃ Toughened Ti (C,N) Matrix Cermet Tool Materials. Materials Science Forum, 2006, 532-533, 37-40.	0.3	1
255	Effect of Nano-Scale TiN on the Mechanical Properties and Microstructure of Si ₃ N ₄ Based Ceramic Tool Materials. Key Engineering Materials, 2006, 315-316, 154-158.	0.4	12
256	Study on Cutting Coloring Stainless Steel by Abrasive Waterjet. Key Engineering Materials, 2006, 315-316, 822-824.	0.4	1
257	Recent Development of Abrasive Water Jet Machining Technology. Key Engineering Materials, 2006, 315-316, 396-400.	0.4	7
258	Profile Cutting on Alumina Ceramics by Abrasive Waterjet. Part 2: Cutting Performance Models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220, 715-725.	1.1	13
259	Effect of Nano-Scale Al ₂ O ₃ on Mechanical Properties of TiB ₂ Ceramic Tool Materials. Key Engineering Materials, 2006, 315-316, 123-126.	0.4	6
260	Simulation of Velocity Field of Two-Phase Flow for Gas and Liquid in the Abrasive Water Jet Nozzle. Key Engineering Materials, 2006, 315-316, 150-153.	0.4	7
261	Effect of TiN and Al ₂ 0 ₃ on the Low Temperature Degradation of 3Y-TZP. Materials Science Forum, 2006, 532-533, 281-284.	0.3	0
262	Study on Mechanical Properties of Multi-Scale and Multi-Phase Nanocomposite Ceramic Tool Materials. , 2006, , .		0
263	Determination of waviness decrease rate by measuring the frequency characteristics of the grinding force in centerless grinding. Journal of Materials Processing Technology, 2005, 170, 563-569.	3.1	5
264	Absorbed energy in laser truing of a small vitrified CBN grinding wheel. Journal of Materials Processing Technology, 2005, 164-165, 1128-1133.	3.1	23
265	Energy-Mode Adjustment in Laser Processing a Small Vitrified CBN Grinding Wheel. Key Engineering Materials, 2005, 291-292, 177-182.	0.4	6
266	Mathematical Models for the Hydrodynamic Characteristics of Abrasive Waterjets. Key Engineering Materials, 2005, 291-292, 459-464.	0.4	0
267	Enhancing the AWJ Cutting Performance by Multipass Machining with Controlled Nozzle Oscillation. Key Engineering Materials, 2005, 291-292, 453-458.	0.4	9
268	Modelling the Depth of Jet Penetration in Abrasive Waterjet Contouring of Alumina Ceramics. Materials Science Forum, 2004, 471-472, 462-468.	0.3	0
269	A Study on the Microstructure of Ti(C,N) Matrix Cermet Tool Material. Materials Science Forum, 2004, 471-472, 67-71.	0.3	0
270	Techniques for Enhancing the Cutting Performance of Abrasive Waterjets. Key Engineering Materials, 2004, 257-258, 521-526.	0.4	8

#	Article	IF	CITATIONS
271	Microstructure and Mechanical Properties of two Kinds of Al ₂ 0 ₃ /SiC Nanocomposites. Materials Science Forum, 2004, 471-472, 243-247.	0.3	3
272	Simulation Design for the Composition of Zirconia Composite Ceramic Tool. Journal of Materials Engineering and Performance, 2004, 13, 167-171.	1.2	0
273	Rapid tooling for zinc spin casting using arc metal spray technology. Journal of Materials Processing Technology, 2004, 146, 283-288.	3.1	10
274	A study of abrasive waterjet characteristics by CFD simulation. Journal of Materials Processing Technology, 2004, 153-154, 488-493.	3.1	127
275	Striation formation mechanisms on the jet cutting surface. Journal of Materials Processing Technology, 2003, 141, 213-218.	3.1	61
276	The cutting performance in multipass abrasive waterjet machining of industrial ceramics. Journal of Materials Processing Technology, 2003, 133, 371-377.	3.1	65
277	The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 2003, 142, 338-346.	3.1	60
278	Synthesis Nanocrystalline α-PbO and β-PbO Lead Oxides for Lead-Acid Battery. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 367-372.	0.1	0
279	An Experimental Study to Enhance the Cutting Performance in Abrasive Waterjet Machining. Machining Science and Technology, 2003, 7, 191-207.	1.4	64
280	A New Centerless Grinding Technique without Employing a Regulating Wheel. Key Engineering Materials, 2003, 238-239, 355-362.	0.4	15
281	The Effects of the Jet Impact Angle on the Cutting Performance in AWJ Machining of Alumina Ceramics. Key Engineering Materials, 2003, 238-239, 117-124.	0.4	22
282	Spray Pyrolysis Technique for Fabrication of Nano-Sized Spherical Agglomerated Oxide Powders for Batteries. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 325-330.	0.1	5
283	Computational Fluid Dynamics (CFD) Simulation of Ultrahigh Velocity Abrasive Waterjet. Key Engineering Materials, 2003, 233-236, 477-482.	0.4	14
284	ECONOMIC OPTIMIZATION OF MACHINING OPERATIONS IN COMPUTER AIDED MANUFACTURING SYSTEMS. , 2003, , 131-160.		1
285	DEVELOPMENT OF OPTIMIZATION STRATEGIES AND CAM SOFTWARE FOR SINGLE PASS END-MILLING OPERATION. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2003, 39, 141.	0.7	6
286	Effect of Spinning Techniques on the Mechanical Properties of Polymer-Derived Silicon Carbide Fiber. Key Engineering Materials, 2002, 224-226, 651-656.	0.4	3
287	A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. Journal of Materials Processing Technology, 2002, 121, 390-394.	3.1	100
288	Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics. Journal of Materials Processing Technology, 2002, 128, 123-129.	3.1	58

#	Article	IF	CITATIONS
289	Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. International Journal of Machine Tools and Manufacture, 2002, 42, 781-789.	6.2	65
290	Prediction of shear force using 3D non-linear FEM analyses for a plain weave carbon fabric in a bias extension state. Finite Elements in Analysis and Design, 2002, 38, 755-764.	1.7	30
291	Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Composite Structures, 2002, 57, 297-303.	3.1	68
292	Optimization of cutting conditions for single pass turning operations using a deterministic approach. International Journal of Machine Tools and Manufacture, 2002, 42, 1023-1033.	6.2	70
293	A Study on the Wear Resistance of ZrO ₂ /Al ₂ O ₃ Ceramic Scissors for Spinning and Weaving. Journal of Materials Engineering and Performance, 2002, 11, 610-613.	1.2	4
294	Analysis of the cutting performance in contouring using an abrasive waterjet. Chinese Journal of Mechanical Engineering (English Edition), 2002, 15, 73.	1.9	3
295	Development of a chip flow model for turning operations. International Journal of Machine Tools and Manufacture, 2001, 41, 1265-1274.	6.2	36
296	COMPUTER-AIDED OPTIMIZATION OF MULTIPLE CONSTRAINT SINGLE PASS FACE MILLING OPERATIONS. Machining Science and Technology, 2001, 5, 77-99.	1.4	25
297	The effect of the multi-layer surface coating of carbide inserts on the cutting forces in turning operations. Journal of Materials Processing Technology, 2000, 97, 114-119.	3.1	24
298	Development of new ceramic cutting tools with alumina coated carbide powders. International Journal of Machine Tools and Manufacture, 2000, 40, 823-832.	6.2	16
299	An Experimental Analysis and Optimisation of the CO2 Laser Cutting Process for Metallic Coated Sheet Steels. International Journal of Advanced Manufacturing Technology, 2000, 16, 334-340.	1.5	28
300	A machinability study of polymer matrix composites using abrasive waterjet cutting technology. Journal of Materials Processing Technology, 1999, 94, 30-35.	3.1	87
301	CO2 laser cutting of metallic coated sheet steels. Journal of Materials Processing Technology, 1999, 95, 164-168.	3.1	43
302	A study of abrasive waterjet cutting of metallic coated sheet steels. International Journal of Machine Tools and Manufacture, 1999, 39, 855-870.	6.2	111
303	Abrasive Waterjet Machining of Polymer Matrix Composites – Cutting Performance, Erosive Process and Predictive Models. International Journal of Advanced Manufacturing Technology, 1999, 15, 757-768.	1.5	168
304	Computer-aided economic optimization of end-milling operations. International Journal of Production Economics, 1998, 54, 307-320.	5.1	32
305	Development of drilling optimization strategies for CAM applications. Journal of Materials Processing Technology, 1998, 84, 181-188.	3.1	7
306	Development of a general tool model for turning operations based on a variable flow stress theory. International Journal of Machine Tools and Manufacture, 1995, 35, 71-90.	6.2	40

#	Article	IF	CITATIONS
307	Computer-Aided Constrained Optimization Analyses and Strategies for Multipass Helical Tooth Milling Operations. CIRP Annals - Manufacturing Technology, 1994, 43, 437-442.	1.7	34
308	Constrained optimization strategies and CAM software for single-pass peripheral milling. International Journal of Production Research, 1993, 31, 2139-2160.	4.9	45
309	Evaluating design concepts by ranking fuzzy numbers. , 0, , .		1
310	Collaborative evaluation of engineering design concepts on the Web. , 0, , .		0
311	A Preliminary Study of the Erosion Process in Micro-Machining of Glasses with a Low Pressure Slurry Jet. Key Engineering Materials, 0, 389-390, 375-380.	0.4	12
312	Experiment Study on Abrasive Waterjet Machining Mechanisms of Brittle Materials. Key Engineering Materials, 0, 375-376, 62-66.	0.4	0
313	A Study of Cavitation Induced Surface Erosion in Abrasive Waterjet Cutting Systems. Advanced Materials Research, 0, 53-54, 357-362.	0.3	3
314	Laser Micromachining of Silicon Substrates. Advanced Materials Research, 0, 76-78, 416-421.	0.3	3
315	Masked and Unmasked Machining of Glass by Micro Abrasive Jet. Advanced Materials Research, 0, 69-70, 182-186.	0.3	3
316	Development in Laser Polishing of Polycrystalline Diamond Tools. Advanced Materials Research, 0, 135, 1-6.	0.3	5
317	A Study of Abrasive Jet Micro-Grooving of Quartz Crystals. Key Engineering Materials, 0, 443, 645-651.	0.4	5
318	Thermal Effect Analysis of Femtosecond Laser Scribing of Silicon. Key Engineering Materials, 0, 443, 687-692.	0.4	4
319	Machining of Micro-Channels on Brittle Glass Using an Abrasive Slurry Jet. Key Engineering Materials, 0, 443, 639-644.	0.4	21
320	Study on Machining System of Precision Micro Abrasive Water Jet and Polish Experiment. Key Engineering Materials, 0, 431-432, 102-105.	0.4	2
321	A Study on the Surface Microstructural Integrity of Ceramics Milled with Abrasive Waterjet. Advanced Materials Research, 0, 135, 64-68.	0.3	0
322	Analysis and Modeling of Micro Abrasive Air Jet Cutting Aspect Ratio. Advanced Materials Research, 0, 126-128, 35-40.	0.3	0
323	Erosion Mechanism of Ultrasonic Vibration Abrasive Waterjet in Micro Machining. Key Engineering Materials, 0, 443, 675-680.	0.4	3
324	A Comparison of Dry and Underwater Laser Micromachining of Silicon Substrates. Key Engineering Materials, 0, 443, 693-698.	0.4	33

#	Article	IF	CITATIONS
325	Progress in the Modeling of Abrasive Jet Machining. Advanced Materials Research, 0, 126-128, 3-8.	0.3	3
326	A Study of Material Removal Process in Abrasive Waterjet Milling. Advanced Materials Research, 0, 325, 621-626.	0.3	3
327	Study of Abrasive Water Jet Polishing Technology. Key Engineering Materials, 0, 487, 327-331.	0.4	8
328	Flow Dynamic Simulation of Micro Abrasive Water Jet. Solid State Phenomena, 0, 175, 171-176.	0.3	9
329	Three Dimensional Monte Carlo Simulation of Microstructure Evolution in Presence of Pores and Impurities for Three-Phase Nanocomposite Ceramic Tool Materials. Advanced Materials Research, 0, 500, 531-536.	0.3	0
330	Influence of Cobalt Additive on Mechanical Properties and Residual Stress of Al ₂ 0 ₃ -TiC Ceramic Cutting Tool Material. Advanced Materials Research, 0, 500, 657-661.	0.3	3
331	Ball-End Milling of Cr12MoV Die Steel Using Ceramic Tool and Cements Carbide Tool. Advanced Materials Research, 0, 565, 466-471.	0.3	0
332	Microstructure and Mechanical Properties of TiB ₂ -WC-TiC-Ni Composite Tool Materials. Advanced Materials Research, 0, 457-458, 1191-1195.	0.3	1
333	A Study of Cutting Forces in High-Speed Dry Milling of Inconel 718. Advanced Materials Research, 0, 500, 105-110.	0.3	5
334	Tool Wear in Ball-End Milling of Cr12MoV Die Steel Using an Indexable Cutter with the Asymmetric Inserts. Advanced Materials Research, 0, 500, 111-116.	0.3	0
335	Thermal Analysis of Multi-Pass Laser Irradiation on Fused Silica. Advanced Materials Research, 0, 565, 621-626.	0.3	0
336	A 3D Cohesive Element Model for Fracture Behavior Analysis of Ceramic Tool Materials Microstructure. Materials Science Forum, 0, 723, 119-123.	0.3	4
337	The Effects of Sintering Process on Microstructure and Mechanical Properties of TiB ₂ -Ti(C _{0.5} N _{0.5})-WC Composite Tool Materials. Advanced Materials Research, 0, 500, 640-645.	0.3	2
338	Study on Experiment Device of Abrasive Water Jet Micro-Turning. Advanced Materials Research, 0, 500, 339-344.	0.3	3
339	Experimental Study of Cutting Forces in Micro End-Milling. Advanced Materials Research, 0, 500, 357-362.	0.3	6
340	A 3D Simulation on Fluid Field at the Impact Zone of Abrasive Water Jet under Different Impact Angles. Advanced Materials Research, 0, 565, 345-350.	0.3	5
341	Ultrashort Pulsed Laser Micromachining of Polycrystalline Diamond. Advanced Materials Research, 0, 497, 220-224.	0.3	6
342	Molecular Dynamics Simulation of the Ablation Process in Ultrashort Pulsed Laser Machining of Polycrystalline Diamond. Advanced Materials Research, 0, 500, 351-356.	0.3	6

#	Article	IF	CITATIONS
343	A Visualization Study of the Radial-Mode Abrasive Waterjet Turning Process for Alumina Ceramics. Advanced Materials Research, 0, 797, 9-14.	0.3	4
344	A Visualization Study of Abrasive Flow Variation in Abrasive Air Jets. Advanced Materials Research, 0, 652-654, 2123-2128.	0.3	0
345	Effect of Ball-Milling Time on the Microstructure and Mechanical Properties of Submicron Ti(C,N)-Based Cermets. Key Engineering Materials, 0, 589-590, 584-589.	0.4	1
346	Micro-Channel Fabrication on Quartz Crystals by a Micro Abrasive Air Jet. Advanced Materials Research, 0, 652-654, 2159-2163.	0.3	0
347	Indentation Crack Initiation and Ductile to Brittle Transition Behavior of Fused Silica. Advanced Materials Research, 0, 797, 667-672.	0.3	10
348	<i>In Situ</i> Growth of TiB ₂ Whiskers in TiB ₂ -TiC _x Matrix Powder. Applied Mechanics and Materials, 0, 401-403, 647-650.	0.2	0
349	Tool Life of Coated Tools in Face Milling of GH4169 at Various Cutting Speeds. Materials Science Forum, 0, 770, 126-129.	0.3	1
350	Establishment of the Low Defect Ceramic Cutting Tool Database. Key Engineering Materials, 0, 589-590, 357-360.	0.4	1
351	Synthesis of Al ₂ 0 ₃ Ceramics Matrix Composites by Thermal Explosion under Pressure and Hot Pressing. Advanced Materials Research, 0, 690-693, 534-537.	0.3	0
352	Optimization of Hybrid Laser-Waterjet Micromachining of Silicon. Advanced Materials Research, 0, 797, 3-8.	0.3	1
353	An Experimental Research on Abrasive Water Jet Polishing of the Hard Brittle Ceramics. Advanced Materials Research, 0, 797, 15-20.	0.3	3
354	The Performance Evaluation and Application of Recycled Concrete in Constructions. Advanced Materials Research, 0, 838-841, 127-130.	0.3	0
355	A Study on Erosion of Alumina Wafer in Abrasive Water Jet Machining. Advanced Materials Research, 0, 1017, 228-233.	0.3	4
356	An SPH Simulation on Vibration Assisted Abrasive Erosion of Hard Brittle Material in Abrasive Waterjet Machining. Advanced Materials Research, 0, 1017, 199-204.	0.3	0
357	Study on Micro Milling Tool with Hot-Pressed Sintered Ti(C ₇ N ₃)-Based Cermet. Key Engineering Materials, 0, 693, 906-913.	0.4	0
358	Quantitative Analysis of the Micro Friction of Single Crystal Silicon. Materials Science Forum, 0, 874, 375-380.	0.3	0
359	An Experimental Investigation of Cutting Forces in Micro End-Milling Process. Key Engineering Materials, 0, 693, 710-717.	0.4	0
360	A Comparison among Dry Laser Ablation and Some Different Water-Laser Co-Machining Processes of Single Crystal Silicon Carbide. Materials Science Forum, 0, 861, 3-8.	0.3	6

#	Article	IF	CITATION
361	Finite Element Simulation of the Cutting Process for Inconel 718 Alloy Using a New Material Constitutive Model. Key Engineering Materials, 0, 693, 1046-1053.	0.4	0
362	Relaxation of Thermal Residual Stress in Laser Irradiated Fused Silica by Annealing Process. Materials Science Forum, 0, 874, 345-350.	0.3	3
363	Characterisation of the Femtosecond Laser Micro-Grooving Process for Germanium Substrates. Materials Science Forum, 0, 874, 291-296.	0.3	5
364	An Investigation of Hole Machining Process on a Carbon-Fiber Reinforced Plastic Sheet by Abrasive Waterjet. Advanced Materials Research, 0, 1136, 113-118.	0.3	8
365	Controlled Fabrication of Micro/Nano-Structures on Germanium Using Ultrashort Laser Pulses under Ambient Conditions. Advanced Materials Research, 0, 1136, 440-445.	0.3	2
366	Coupled Thermal-Mechanical Analysis of CO ₂ Laser Irradiation on Fused Silica. Advanced Materials Research, 0, 1136, 531-536.	0.3	0
367	Three Dimensional Monte Carlo Simulation of Microstructure Evolution in Presence of Pores for Three-Phase Nano-Composite Ceramic Tool Materials. Advanced Materials Research, 0, 457-458, 1567-1572.	0.3	0