Zhonghua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994266/publications.pdf Version: 2024-02-01

<u> 7номения Гиг</u>

#	Article	IF	CITATIONS
1	MAPK CcSakA of the HOG Pathway Is Involved in Stipe Elongation during Fruiting Body Development in Coprinopsis cinerea. Journal of Fungi (Basel, Switzerland), 2022, 8, 534.	3.5	2
2	The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. Fungal Biology Reviews, 2021, 35, 14-26.	4.7	20
3	Accumulation and cross-linkage of β-1,3/1,6-glucan lead to loss of basal stipe cell wall extensibility in mushroom Coprinopsis cinerea. Carbohydrate Polymers, 2021, 259, 117743.	10.2	3
4	An Aspergillus nidulans endo-β-1,3-glucanase exhibited specific catalytic features and was used to prepare 3-O-β-cellobiosyl-d-glucose and 3-O-β-gentiobiosyl-d-glucose with high antioxidant activity from barley β-glucan and laminarin, respectively. International Journal of Biological Macromolecules, 2021, 186, 424-432.	7.5	5
5	The extracellular β-glucosidase BGL2 has two variants with different molecular sizes and hydrolytic activities in the stipe or pilei of Coprinopsis cinerea. Microbiology (United Kingdom), 2021, 167, .	1.8	2
6	A novel endo-β-1,6-glucanase from the mushroom Coprinopsis cinerea and its application in studying of cross-linking of β-1,6-glucan and the wall extensibility in stipe cell walls. International Journal of Biological Macromolecules, 2020, 160, 612-622.	7.5	11
7	Heterologous expression and characterization of a novel chitin deacetylase, CDA3, from the mushroom Coprinopsis cinerea. International Journal of Biological Macromolecules, 2020, 150, 536-545.	7.5	13
8	Comparative study of β-glucan-degrading enzymes from Coprinopsis cinerea for their capacities to induce stipe cell wall extension. International Journal of Biological Macromolecules, 2020, 152, 516-524.	7.5	8
9	Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
10	β-Glucosidase BGL1 from Coprinopsis cinerea Exhibits a Distinctive Hydrolysis and Transglycosylation Activity for Application in the Production of 3-O-β-d-Gentiobiosyl-d-laminarioligosaccharides. Journal of Agricultural and Food Chemistry, 2019, 67, 10744-10755.	5.2	8
11	A novel thermophilic exochitinase ChiEn3 from Coprinopsis cinerea exhibits a hyperhydrolytic activity toward 85% deacetylated chitosan and a significant application to preparation of chitooligosaccharides from the chitosan. Carbohydrate Polymers, 2019, 207, 729-736.	10.2	13
12	Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom <i>Coprinopsis cinerea</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	35
13	HPAEC-PAD and Q-TOF-MS/MS analysis reveal a novel mode of action of endo-β-1,3(4)-d-glucanase Eng16A from coprinopsis cinerea on barley β-glucan. Food Chemistry, 2019, 287, 160-166.	8.2	9
14	Endo-β-1,3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohydrate Polymers, 2018, 194, 339-349.	10.2	34
15	Heterologous expression, characterization and possible functions of the chitin deacetylases, Cda1 and Cda2, from mushroom Coprinopsis cinerea. Glycobiology, 2018, 28, 318-332.	2.5	18
16	ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase Chilll on Chitin Degradation. Journal of Agricultural and Food Chemistry, 2018, 66, 12773-12782.	5.2	11
17	Gene cloning, heterologous expression and characterization of a Coprinopsis cinerea endo-β-1,3(4)-glucanase. Fungal Biology, 2017, 121, 61-68.	2.5	27
18	Purification, characterization and function analysis of an extracellular Î ² -glucosidase from elongating stipe cell walls in <i>Coprinopsis cinerea</i> . FEMS Microbiology Letters, 2016, 363, fnw078.	1.8	6

Zhonghua Liu

#	Article	IF	CITATIONS
19	Purification, characterization and physiological significance of a chitinase from the pilei of <i>Coprinopsis cinerea</i> fruiting bodies. FEMS Microbiology Letters, 2016, 363, fnw120.	1.8	25
20	Characterization of the nonâ€sexual flocculation of fission yeast cells that results from the deletion of ribosomal protein L32. Yeast, 2015, 32, 439-449.	1.7	7
21	Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea. Fungal Biology, 2015, 119, 946-956.	2.5	25
22	Comparative Study of Nonautolytic Mutant and Wild-Type Strains of Coprinopsis cinerea Supports an Important Role of Glucanases in Fruiting Body Autolysis. Journal of Agricultural and Food Chemistry, 2015, 63, 9609-9614.	5.2	29
23	Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies. Microbiology (United Kingdom), 2015, 161, 1978-1989.	1.8	31
24	Characterization of stipe elongation of the mushroom Coprinopsis cinerea. Microbiology (United) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

25	Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa. Fungal Biology, 2014, 118, 1-11.	2.5	25
26	Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Applied Microbiology and Biotechnology, 2013, 97, 6537-6547.	3.6	28
27	Pretreatment with <i>Stenotrophomonas maltophilia</i> CGMCC 1.1788 increased the aphicidal activity of imidacloprid. Journal of Pesticide Sciences, 2013, 38, 139-143.	1.4	2