# Zhao-Yin Wen

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7994116/zhao-yin-wen-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| 254         | 10,286         | 55          | 89      |
|-------------|----------------|-------------|---------|
| papers      | citations      | h-index     | g-index |
| 259         | 12,124         | 8.7 avg, IF | 6.74    |
| ext. papers | ext. citations |             | L-index |

| #   | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF   | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 254 | In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. <i>Energy Storage Materials</i> , <b>2022</b> , 47, 61-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.4 | 8         |
| 253 | Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. <i>Chemical Engineering Journal</i> , <b>2022</b> , 435, 134633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.7 | 3         |
| 252 | A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. <i>Energy Storage Materials</i> , <b>2022</b> , 45, 934-940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.4 | 4         |
| 251 | A Janus Li1.5Al0.5Ge1.5(PO4)3 with high critical current density for high-voltage lithium batteries. <i>Chemical Engineering Journal</i> , <b>2022</b> , 429, 132506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.7 | 3         |
| 250 | In Situ Partial Pyrolysis of Sodium Carboxymethyl Cellulose Constructing Hierarchical Pores in the Silicon Anode for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , <b>2022</b> , 5, 380-386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1  | 1         |
| 249 | Improvement of density and electrochemical performance of garnet-type Li7La3Zr2O12 for solid-state lithium metal batteries enabled by W and Ta co-doping strategy. <i>Materials Today Energy</i> , <b>2022</b> , 101034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    | 4         |
| 248 | Understanding the influencing factors of porous cathode contributions to the impedance of a sodium-nickel chloride (ZEBRA) battery. <i>Functional Materials Letters</i> , <b>2021</b> , 14, 2141002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2  | O         |
| 247 | In-situ Alloyed Ni-Fe Co-Reaction Electrode for High-Stability and High-Rate Na-Metal Halide Batteries. <i>Materials Today Energy</i> , <b>2021</b> , 100894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7    | 0         |
| 246 | Double-functional 3D cross-linking carbon fiber with Sn particle coating layer for improving interfacial performance of Na-&Al2O3 batteries. <i>Chemical Engineering Journal</i> , <b>2021</b> , 133545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7 | O         |
| 245 | Sulfonated Bacterial Cellulose-Based Functional Gel Polymer Electrolyte for LiD2 Batteries with LiI as a Redox Mediator. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2021</b> , 9, 13883-13892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3  | 3         |
| 244 | Design of solid-state sodium-ion batteries with high mass-loading cathode by porous-dense bilayer electrolyte. <i>Journal of Materiomics</i> , <b>2021</b> , 7, 1352-1352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.7  | 1         |
| 243 | In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. <i>Energy Storage Materials</i> , <b>2021</b> , 36, 171-178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.4 | 17        |
| 242 | A robust air electrode supported proton-conducting reversible solid oxide cells prepared by low temperature co-sintering. <i>Journal of Power Sources</i> , <b>2021</b> , 492, 229602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9  | 2         |
| 241 | Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. <i>Energy Storage Materials</i> , <b>2021</b> , 36, 179-185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.4 | 13        |
| 240 | Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. <i>Chemical Engineering Journal</i> , <b>2021</b> , 411, 128508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7 | 22        |
| 239 | Hollow-Sphere-Structured NaFe(PO)(PO)/C as a Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials &amp; Applied &amp; Applied Materials &amp; Applied &amp; App</i> | 9.5  | 5         |
| 238 | Suppressing Redox Shuttle with MXene-Modified Separators for Li-O Batteries. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2021</b> , 13, 30766-30775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5  | 7         |

## (2020-2021)

| 237 | Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes. <i>Journal of Alloys and Compounds</i> , <b>2021</b> , 855, 157501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.7           | 4  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|
| 236 | Constructing a charged-state Na-NiCl2 battery with NiCl2/graphene aerogel composite as cathode. <i>Chemical Engineering Journal</i> , <b>2021</b> , 421, 127853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.7          | 3  |
| 235 | Achieving high critical current density in Ta-doped Li7La3Zr2O12/MgO composite electrolytes.<br>Journal of Alloys and Compounds, <b>2021</b> , 856, 157222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.7           | 6  |
| 234 | Sustained Release-Driven Formation of Ultrastable SEI between Li6PS5Cl and Lithium Anode for Sulfide-Based Solid-State Batteries. <i>Advanced Energy Materials</i> , <b>2021</b> , 11, 2002545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.8          | 33 |
| 233 | Electrochemical performance of NiCl2 with Br-free molten salt electrolyte in high power thermal batteries. <i>Science China Technological Sciences</i> , <b>2021</b> , 64, 91-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5           | 7  |
| 232 | A 3D Cross-Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet-Type Solid-State Lithium Batteries. <i>Advanced Functional Materials</i> , <b>2021</b> , 31, 2007815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.6          | 38 |
| 231 | Synthesis of Ga-doped Li7La3Zr2O12 solid electrolyte with high Li+ ion conductivity. <i>Ceramics International</i> , <b>2021</b> , 47, 2123-2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1           | 9  |
| 230 | Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. <i>Chemical Engineering Journal</i> , <b>2021</b> , 406, 126754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.7          | 18 |
| 229 | MOF/Poly(Ethylene Oxide) Composite Polymer Electrolyte for Solid-state Lithium Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1             | 4  |
| 228 | A hydrogel-enabled free-standing polypyrrole cathode film for potassium ion batteries with high mass loading and low-temperature stability. <i>Journal of Materials Chemistry A</i> , <b>2021</b> , 9, 15045-15050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13            | 2  |
| 227 | Synthesis and properties of poly(1,3-dioxolane) quasi-solid-state electrolytes a rare-earth triflate catalyst. <i>Chemical Communications</i> , <b>2021</b> , 57, 7934-7937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8           | 13 |
| 226 | A facile method for the synthesis of a sintering dense nano-grained NaZrSiPO Na-ion solid-state electrolyte. <i>Chemical Communications</i> , <b>2021</b> , 57, 4023-4026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8           | 7  |
| 225 | A rechargeable all-solid-state sodium peroxide (Na2O2) battery with low overpotential. <i>Journal Physics D: Applied Physics</i> , <b>2021</b> , 54, 174005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3             | 2  |
| 224 | Composite Hybrid Quasi-Solid Electrolyte for High-Energy Lithium Metal Batteries. <i>ACS Applied Energy Materials</i> , <b>2021</b> , 4, 7973-7982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.1           | 9  |
| 223 | Robust Conversion-Type Li/Garnet interphases from metal salt solutions. <i>Chemical Engineering Journal</i> , <b>2021</b> , 417, 129158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.7          | 13 |
| 222 | Submicrometer Rod-Structured Na7V4 (P2O7)4(PO4)/C as a Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , <b>2021</b> , 4, 10298-10305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1           | O  |
| 221 | Spray drying derived wrinkled pea-shaped carbon-matrixed KVP2O7 as a cathode material for potassium-ion batteries. <i>Journal of Alloys and Compounds</i> , <b>2021</b> , 884, 161126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7           | 2  |
| 220 | High-Rate and Long-Life Intermediate-Temperature Na-NiCl Battery with Dual-Functional Ni-Carbon Composite Nanofiber Network. <i>ACS Applied Materials &amp; Discounty (Naterials &amp; Discounty </i> | · <b>8</b> ·5 | 4  |

| 219 | Ultrathin TiO2 surface layer coated TiN nanoparticles in freestanding film for high sulfur loading Li-S battery. <i>Chemical Engineering Journal</i> , <b>2020</b> , 399, 125674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7 | 14 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 218 | Introducing a conductive pillar: a polyaniline intercalated layered titanate for high-rate and ultra-stable sodium and potassium ion storage. <i>Chemical Communications</i> , <b>2020</b> , 56, 8392-8395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8  | 11 |
| 217 | Coupling solid and soluble catalysts toward stable Li anode for high-performance LiD2 batteries. <i>Energy Storage Materials</i> , <b>2020</b> , 28, 342-349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.4 | 7  |
| 216 | Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. <i>Chemical Engineering Journal</i> , <b>2020</b> , 389, 124403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7 | 53 |
| 215 | Recent advances in anodic interface engineering for solid-state lithium-metal batteries. <i>Materials Horizons</i> , <b>2020</b> , 7, 1667-1696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.4 | 34 |
| 214 | Oximation reaction induced reduced graphene oxide gas sensor for formaldehyde detection.<br>Journal of Saudi Chemical Society, <b>2020</b> , 24, 364-373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.3  | 6  |
| 213 | Preparation of Nanocomposite Polymer Electrolyte via In Situ Synthesis of SiO Nanoparticles in PEO. <i>Nanomaterials</i> , <b>2020</b> , 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4  | 11 |
| 212 | FeNi-LDH Intercalation for Suppressing the Self-Discharge of the VB-Air Battery. <i>ACS Applied Materials &amp; Material</i> | 9.5  | 2  |
| 211 | Anodic electrochemical mechanism and performance dominant factors of the VB2-air battery. <i>Chemical Engineering Journal</i> , <b>2020</b> , 388, 124257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.7 |    |
| 210 | Reversible AlCl4[Al2Cl7[Lonversion in a hybrid NaAl battery. <i>Journal of Power Sources</i> , <b>2020</b> , 453, 227843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.9  | 4  |
| 209 | In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, <b>2020</b> , 2009006-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.8  | 2  |
| 208 | Realizing the growth of nano-network Li2O2 film on defect-rich holey Co9S8 nanosheets for Li-O2 battery. <i>Chemical Engineering Journal</i> , <b>2020</b> , 396, 125228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.7 | 12 |
| 207 | Multi-substituted garnet-type electrolytes for solid-state lithium batteries. <i>Ceramics International</i> , <b>2020</b> , 46, 5489-5494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1  | 8  |
| 206 | Leakage behavior of toxic substances of naphthalene sulfonate-formaldehyde condensation from cement based materials. <i>Journal of Environmental Management</i> , <b>2020</b> , 255, 109934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.9  | 44 |
| 205 | LaNiLiO-Shielded Layered Cathode Materials for Emerging High-Performance Safe Batteries. <i>ACS Applied Materials &amp; Date Materi</i>                                                                                                                                                                                                 | 9.5  | 8  |
| 204 | Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells. <i>Journal of Power Sources</i> , <b>2020</b> , 449, 227498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.9  | 14 |
| 203 | In Situ Conversion of Cu3P Nanowires to Mixed Ion/Electron-Conducting Skeleton for Homogeneous Lithium Deposition. <i>Advanced Energy Materials</i> , <b>2020</b> , 10, 1902989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.8 | 56 |
| 202 | Cobalt Phosphide Nanoflake-Induced Flower-like Sulfur for High Redox Kinetics and Fast Ion<br>Transfer in Lithium-Sulfur Batteries. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2020</b> , 12, 49626-49635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5  | 22 |

## (2019-2020)

| 201         | Introducing a cell moisturizer: organogel nano-beads with rapid response to electrolytes for Prussian white analogue based non-aqueous potassium ion battery. <i>Chemical Communications</i> , <b>2020</b> , 56, 9719-9722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.8           | 1   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| <b>2</b> 00 | Ultrathin, dense, hybrid polymer/ceramic gel electrolyte for high energy lithium metal batteries. <i>Materials Letters</i> , <b>2020</b> , 279, 128480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3           | 3   |
| 199         | A new high-capacity cathode for all-solid-state lithium sulfur battery. Solid State Ionics, 2020, 357, 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>109</b> .3 | 10  |
| 198         | Ultrathin, Compacted Gel Polymer Electrolytes Enable High-Energy and Stable-Cycling 4 V Lithium-Metal Batteries. <i>ChemElectroChem</i> , <b>2020</b> , 7, 3656-3662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.3           | 4   |
| 197         | Li1.5Al0.5Ge1.5(PO4)3 Ceramic Based Lithium-Sulfur Batteries with High Cycling Stability Enabled by a Dual Confinement Effect for Polysulfides. <i>ChemElectroChem</i> , <b>2020</b> , 7, 4093-4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.3           | 3   |
| 196         | Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries. <i>Chemical Engineering Journal</i> , <b>2020</b> , 387, 124059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.7          | 8   |
| 195         | In Situ Lithiophilic Layer from H/Li Exchange on Garnet Surface for the Stable Lithium-Solid Electrolyte Interface. <i>ACS Applied Materials &amp; Discrete State Stable </i> | 9.5           | 42  |
| 194         | Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO. <i>Journal of Energy Chemistry</i> , <b>2019</b> , 39, 8-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12            | 44  |
| 193         | Strain buffering effect of quasi-amorphous disordered microstructure enabling long-term fast sodium storage performance. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 574-585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13            | 1   |
| 192         | Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. <i>Energy Storage Materials</i> , <b>2019</b> , 22, 207-217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.4          | 51  |
| 191         | Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet LiLaZrO. <i>Nanomaterials</i> , <b>2019</b> , 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.4           | 7   |
| 190         | Multiple Nanosheets Assembled Nanoflower-like MnO2 to Anchor Polysulfides for Improving Electrochemical Performance in Lithium Sulfur Batteries. <i>ChemistrySelect</i> , <b>2019</b> , 4, 7102-7107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8           | 2   |
| 189         | A high-energy quinone-based all-solid-state sodium metal battery. <i>Nano Energy</i> , <b>2019</b> , 62, 718-724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.1          | 37  |
| 188         | In Situ Generated Fireproof Gel Polymer Electrolyte with Li6.4Ga0.2La3Zr2O12 As Initiator and Ion-Conductive Filler. <i>Advanced Energy Materials</i> , <b>2019</b> , 9, 1900611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.8          | 102 |
| 187         | Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. <i>Ceramics International</i> , <b>2019</b> , 45, 14991-14996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1           | 42  |
| 186         | Constructing dual interfacial modification by synergetic electronic and ionic conductors: Toward high-performance LAGP-Based Li-S batteries. <i>Energy Storage Materials</i> , <b>2019</b> , 23, 299-305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.4          | 27  |
| 185         | Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification. <i>Nano Energy</i> , <b>2019</b> , 61, 411-419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.1          | 24  |
| 184         | Acid induced conversion towards a robust and lithiophilic interface for Lilli7La3Zr2O12 solid-state batteries. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 14565-14574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13            | 79  |

| 183 | Composite Solid Polymer Electrolyte with Garnet Nanosheets in Poly(ethylene oxide). <i>ACS Sustainable Chemistry and Engineering</i> , <b>2019</b> , 7, 7163-7170                                                                                         | 8.3  | 77 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 182 | In situ formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 11513-11519                                                              | 13   | 35 |
| 181 | Conformal, nanoscale EAl2O3 coating of garnet conductors for solid-state lithium batteries. <i>Solid State Ionics</i> , <b>2019</b> , 342, 115063                                                                                                         | 3.3  | 8  |
| 180 | ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 7752-7759                                                            | 13   | 77 |
| 179 | From nanomelting to nanobeads: nanostructured SbxBi1\( \text{N} \) alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 27041-27047 | 13   | 32 |
| 178 | Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. <i>Journal of Materials Chemistry A</i> , <b>2019</b> , 7, 27304-27312                   | 13   | 43 |
| 177 | Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for Solid-State Li Metal Batteries. <i>ACS Nano</i> , <b>2019</b> , 13, 14549-14556                                                                              | 16.7 | 74 |
| 176 | Sintering, micro-structure and Li+ conductivity of Li7 $\square$ a3Zr2 $\square$ b O12/MgO (x = 0.2 $\square$ .7) Li-Garnet composite ceramics. <i>Ceramics International</i> , <b>2019</b> , 45, 56-63                                                   | 5.1  | 26 |
| 175 | In situ synthesis of core-shell structured Ge@NC hybrids as high performance anode material for lithium-ion batteries. <i>Chemical Engineering Journal</i> , <b>2019</b> , 360, 1301-1309                                                                 | 14.7 | 27 |
| 174 | Suppressing Self-Discharge of Vanadium Diboride by Zwitterionicity of the Polydopamine Coating Layer. <i>ACS Applied Materials &amp; amp; Interfaces</i> , <b>2019</b> , 11, 5123-5128                                                                    | 9.5  | 4  |
| 173 | Nanoporous ceramic-poly(ethylene oxide) composite electrolyte for sodium metal battery. <i>Materials Letters</i> , <b>2019</b> , 236, 13-15                                                                                                               | 3.3  | 11 |
| 172 | Searching for low-cost Li MO compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. <i>Journal of Materiomics</i> , <b>2019</b> , 5, 221-228                                                                                     | 6.7  | 10 |
| 171 | Organic Polysulfides Based on BBBIStructure as Additives or Cosolvents for High Performance Lithium-Sulfur Batteries. <i>ChemElectroChem</i> , <b>2018</b> , 5, 1717-1723                                                                                 | 4.3  | 10 |
| 170 | Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification. <i>Journal of Power Sources</i> , <b>2018</b> , 390, 13-19                                                                              | 8.9  | 34 |
| 169 | Robust and Conductive Red MoSe for Stable and Fast Lithium Storage. ACS Nano, 2018, 12, 4010-4018                                                                                                                                                         | 16.7 | 42 |
| 168 | Ionic activation via a hybrid ILBSE interfacial layer for LiD2 batteries with 99.5% coulombic efficiency. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 12945-12949                                                                          | 13   | 9  |
| 167 | An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries. <i>Journal of Power Sources</i> , <b>2018</b> , 377, 36-43                                                                  | 8.9  | 37 |
| 166 | Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+conductivity. <i>Ceramics International</i> , <b>2018</b> , 44, 5660-5667                                                                                        | 5.1  | 57 |

#### (2018-2018)

| 165 | Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 2365-2370                                                                                                                        | 13    | 34 |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--|
| 164 | Method Using Water-Based Solvent to Prepare LiLaZrO Solid Electrolytes. <i>ACS Applied Materials</i> & Amp; Interfaces, <b>2018</b> , 10, 17147-17155                                                                                                                           | 9.5   | 49 |  |
| 163 | Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. <i>Energy Storage Materials</i> , <b>2018</b> , 15, 139-147                                                                                                             | 19.4  | 46 |  |
| 162 | Electrochemical performance and stability of cobalt-free Ln1.2Sr0.8NiO4 (Ln=La and Pr) air electrodes for proton-conducting reversible solid oxide cells. <i>Electrochimica Acta</i> , <b>2018</b> , 267, 269-277                                                               | 6.7   | 51 |  |
| 161 | Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. <i>Energy Storage Materials</i> , <b>2018</b> , 11, 16-23                                                                                                                         | 19.4  | 96 |  |
| 160 | Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. <i>Journal of Power Sources</i> , <b>2018</b> , 396, 533-541                                                                                        | 8.9   | 84 |  |
| 159 | High-performance phosphorus-modified SiO/C anode material for lithium ion batteries. <i>Ceramics International</i> , <b>2018</b> , 44, 18509-18515                                                                                                                              | 5.1   | 23 |  |
| 158 | High-Strength Internal Cross-Linking Bacterial Cellulose-Network-Based Gel Polymer Electrolyte for Dendrite-Suppressing and High-Rate Lithium Batteries. <i>ACS Applied Materials &amp; Description</i> (2018), 10, 17809-17819                                                 | 9.5   | 84 |  |
| 157 | Composites of Li-Al-B-Si-O glass and FAl2O3 for LTCC-silicon heterogeneous integration applications. <i>Ceramics International</i> , <b>2018</b> , 44, S141-S144                                                                                                                | 5.1   | 1  |  |
| 156 | FeS Nanoparticles Anchored on Nitrogen-Doped Graphene Nanosheets as Anode Materials for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials &amp; Discourse Materials</i> , 10, 29476-29485                                                                         | 5 9.5 | 52 |  |
| 155 | Enhancing the electrochemical performances of LiNi0.5Mn1.5O4 by Co3O4 surface coating. <i>Journal of Alloys and Compounds</i> , <b>2018</b> , 762, 163-170                                                                                                                      | 5.7   | 16 |  |
| 154 | Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage. <i>Journal of Power Sources</i> , <b>2018</b> , 396, 124-133                                                                                                 | 8.9   | 35 |  |
| 153 | Nanoporous Adsorption Effect on Alteration of the Li Diffusion Pathway by a Highly Ordered Porous Electrolyte Additive for High-Rate All-Solid-State Lithium Metal Batteries. <i>ACS Applied Materials &amp; Discourse Materials (Materials &amp; Discours)</i> 10, 23874-23882 | 9.5   | 50 |  |
| 152 | A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. <i>Ionics</i> , <b>2018</b> , 24, 1545-1551                                                                                                                             | 2.7   | 15 |  |
| 151 | Enhancing metallic lithium battery performance by tuning the electrolyte solution structure.<br>Journal of Materials Chemistry A, <b>2018</b> , 6, 1612-1620                                                                                                                    | 13    | 38 |  |
| 150 | Metal-organic-framework-derived N-C-Co film as a shuttle-suppressing interlayer for lithium sulfur battery. <i>Chemical Engineering Journal</i> , <b>2018</b> , 334, 2356-2362                                                                                                  | 14.7  | 55 |  |
| 149 | A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery. <i>Journal of Power Sources</i> , <b>2018</b> , 382, 190-197                                                                                                                                        | 8.9   | 79 |  |
| 148 | Improving the rate and low-temperature performance of LiFePO4 by tailoring the form of carbon coating from amorphous to graphene-like. <i>Journal of Solid State Electrochemistry</i> , <b>2018</b> , 22, 797-805                                                               | 2.6   | 6  |  |

| 147 | Lattice Incorporation of Cu into the BaCeZrYYbO Electrolyte on Boosting Its Sintering and Proton-Conducting Abilities for Reversible Solid Oxide Cells. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2018</b> , 10, 42387-42396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.5               | 24 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 146 | Recent Progress in Liquid Electrolyte-Based Liß Batteries: Shuttle Problem and Solutions. <i>Electrochemical Energy Reviews</i> , <b>2018</b> , 1, 599-624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.3              | 33 |
| 145 | Atomic-Thick TiO(B) Nanosheets Decorated with Ultrafine CoO Nanocrystals As a Highly Efficient Catalyst for Lithium-Oxygen Battery. <i>ACS Applied Materials &amp; Decorated Materials</i> | 9.5               | 26 |
| 144 | From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. <i>ACS Applied Materials &amp; Distriction</i> , 10, 38526-38537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5               | 49 |
| 143 | Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells. <i>International Journal of Hydrogen Energy</i> , <b>2018</b> , 43, 20050-20058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.7               | 18 |
| 142 | Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 19159-19166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                | 25 |
| 141 | None-Mother-Powder Method to Prepare Dense Li-Garnet Solid Electrolytes with High Critical Current Density. <i>ACS Applied Energy Materials</i> , <b>2018</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.1               | 18 |
| 140 | An in situ element permeation constructed high endurance LilLZO interface at high current densities. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 18853-18858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                | 99 |
| 139 | Disordered carbon tubes based on cotton cloth for modulating interface impedance in<br>P-Al2O3-based solid-state sodium metal batteries. <i>Journal of Materials Chemistry A</i> , <b>2018</b> , 6, 12623-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 <sup>1</sup> 9 | 15 |
| 138 | N-Doped Graphene Decorated with Fe/Fe3N/Fe4N Nanoparticles as a Highly Efficient Cathode Catalyst for Rechargeable LiD2 Batteries. <i>ChemElectroChem</i> , <b>2018</b> , 5, 2435-2441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3               | 13 |
| 137 | Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. <i>Energy Storage Materials</i> , <b>2018</b> , 15, 282-290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.4              | 82 |
| 136 | A High-Rate Ionic Liquid Lithium-O2 Battery with LiOH Product. <i>Journal of Physical Chemistry C</i> , <b>2017</b> , 121, 5968-5973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8               | 20 |
| 135 | Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery. <i>ACS Applied Materials &amp; Damp; Interfaces</i> , <b>2017</b> , 9, 14878-14888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5               | 97 |
| 134 | Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. <i>Ceramics International</i> , <b>2017</b> , 43, 9458-9464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1               | 35 |
| 133 | Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO3 nanosheets for low-overpotential Li-O2 batteries. <i>Nano Energy</i> , <b>2017</b> , 36, 186-196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.1              | 71 |
| 132 | Synthesis of graphene-modified Li3V2(PO4)3 with superior electrochemical properties via a catalytic solid-state-reaction process. <i>Journal of Alloys and Compounds</i> , <b>2017</b> , 717, 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7               | 8  |
| 131 | Local Lattice Distortion Activate Metastable Metal Sulfide as Catalyst with Stable Full Discharge-Charge Capability for Li-O Batteries. <i>Nano Letters</i> , <b>2017</b> , 17, 3518-3526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5              | 56 |
| 130 | Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer. <i>Journal of Power Sources</i> , <b>2017</b> , 340, 411-418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.9               | 26 |

| 129 | Self-Repairing Function of NiS Layer on Ni Particles in the Na/NiCl Cells with the Addition of Sulfur in the Catholyte. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2017</b> , 9, 21234-21242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5                | 15              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| 128 | Facile synthesis of the sandwich-structured germanium/reduced graphene oxide hybrid: an advanced anode material for high-performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 13430-13438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                 | 38              |
| 127 | A rGOIINT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 14775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-14782            | <sub>2</sub> 56 |
| 126 | A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 13971-13975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                 | 37              |
| 125 | The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 9339-9349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                 | 39              |
| 124 | A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries. <i>Journal of Power Sources</i> , <b>2017</b> , 342, 521-528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9                | 41              |
| 123 | Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. <i>Journal of Physical Chemistry C</i> , <b>2017</b> , 121, 1431-1435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.8                | 79              |
| 122 | Improved performance of Li-S battery with hybrid electrolyte by interface modification. <i>Solid State Ionics</i> , <b>2017</b> , 300, 67-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                | 19              |
| 121 | Interconnected CoFeO-Polypyrrole Nanotubes as Anode Materials for High Performance Sodium Ion Batteries. <i>ACS Applied Materials &amp; Acs Applied &amp; Acs Applie</i> | 9.5                | 37              |
| 120 | Performance and stability of BaCe0.8\( \text{Z} \text{F0.2InxO3E} \) based materials and reversible solid oxide cells working at intermediate temperature. <i>International Journal of Hydrogen Energy</i> , <b>2017</b> , 42, 28549-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 <del>5</del> 58 | 25              |
| 119 | Study of CaZr0.9In0.1O3Dased reversible solid oxide cells with tubular electrode supported structure. <i>International Journal of Hydrogen Energy</i> , <b>2017</b> , 42, 23189-23197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.7                | 13              |
| 118 | Influence of Cu2+ doping concentration on the catalytic activity of CuxCo3⊠O4 for rechargeable LiD2 batteries. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 18569-18576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                 | 8               |
| 117 | Assembly of Multifunctional NiP/NiS Heterostructures and Their Superstructure for High Lithium and Sodium Anodic Performance. <i>ACS Applied Materials &amp; District Sciences</i> , <b>2017</b> , 9, 28549-28557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.5                | 20              |
| 116 | A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 19017-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19024              | 108             |
| 115 | Self-supported mesoporous FeCo2O4 nanosheets as high capacity anode material for sodium-ion battery. <i>Chemical Engineering Journal</i> , <b>2017</b> , 330, 764-773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.7               | 36              |
| 114 | Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. <i>Solid State Ionics</i> , <b>2017</b> , 309, 15-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                | 27              |
| 113 | Enhanced stability performance of nickel nanowire with 3D conducting network for planar sodium-nickel chloride batteries. <i>Journal of Power Sources</i> , <b>2017</b> , 360, 345-352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.9                | 17              |
| 112 | Fabrication and characterization of a double-layer electrolyte membrane for BaCeO 3 -based reversible solid oxide cells (RSOCs). <i>Solid State Ionics</i> , <b>2017</b> , 308, 167-172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                | 8               |

| 111 | Long life anode material sodium titanate synthesized by a moderate method. <i>Materials Letters</i> , <b>2017</b> , 186, 326-329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3 | 3  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 110 | One Step Fabrication of Co3O4-PPy Cathode for Lithium-O2 Batteries. <i>Chinese Journal of Chemistry</i> , <b>2017</b> , 35, 35-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9 | 7  |
| 109 | Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries. <i>Electrochimica Acta</i> , <b>2016</b> , 213, 496-503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.7 | 32 |
| 108 | Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet. <i>Jom</i> , <b>2016</b> , 68, 2593-2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1 | 26 |
| 107 | Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries. <i>ACS Applied Materials &amp; Discourse Materials </i> | 9.5 | 37 |
| 106 | The Influence of Electrode Microstructure on the Performance of Free-Standing Cathode for Aprotic Lithium-Oxygen Battery. <i>Jom</i> , <b>2016</b> , 68, 2585-2592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1 | 6  |
| 105 | Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries. <i>Physical Chemistry Chemical Physics</i> , <b>2016</b> , 18, 29293-29299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6 | 49 |
| 104 | On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. <i>Journal of Power Sources</i> , <b>2016</b> , 324, 455-461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.9 | 45 |
| 103 | Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description of Communication (Natural Science of Communication of Communication)</i> Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description (Natural Science of Communication)</i> Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description (Natural Science of Communication)</i> Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description (Natural Science of Communication)</i> Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description (Natural Science of Communication)</i> Trimethylsilyl Chloride-Modified Li Anode for Enhanced Performance of Li-S Cells. <i>ACS Applied Materials &amp; Description (Natural Science of Communication)</i> Trimethylsilyl Chloride (Natural Science of Communication)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5 | 36 |
| 102 | Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage. <i>ACS Applied Materials &amp; Enhanced Lithium Storage</i> . <i>ACS Applied Materials &amp; Enhanced Lithium Storage</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5 | 21 |
| 101 | Synthesis of EMnO2 nanowires modified by Co3O4 nanoparticles as a high-performance catalyst for rechargeable Li-O2 batteries. <i>Physical Chemistry Chemical Physics</i> , <b>2016</b> , 18, 926-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6 | 38 |
| 100 | A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96[1.9H2O with excellent electrochemical properties. <i>Journal of Power Sources</i> , <b>2016</b> , 314, 35-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.9 | 26 |
| 99  | One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries. <i>Chemical Communications</i> , <b>2016</b> , 52, 5613-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8 | 32 |
| 98  | Reduced free-standing Co3O4@Ni cathode for lithiumBxygen batteries with enhanced electrochemical performance. <i>RSC Advances</i> , <b>2016</b> , 6, 16263-16267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7 | 15 |
| 97  | In Situ Self-Developed Nanoscale MnO/MEG Composite Anode Material for Lithium-Ion Battery.<br>Journal of the Electrochemical Society, <b>2016</b> , 163, A722-A726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.9 | 12 |
| 96  | Analysis of Structure and Electrochemistry of Selenium-Containing Conductive Polymer Materials for Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , <b>2016</b> , 163, A654-A659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.9 | 16 |
| 95  | Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries.<br>Journal of Solid State Electrochemistry, <b>2016</b> , 20, 1831-1836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6 | 14 |
| 94  | Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. <i>Electrochimica Acta</i> , <b>2016</b> , 196, 377-385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7 | 38 |

#### (2015-2016)

| 93 | controlled construction of 3D hierarchical manganese fluoride nanostructures via an oleylamine-assisted solvothermal route with high performance for rechargeable lithium ion batteries. <i>RSC Advances</i> , <b>2016</b> , 6, 27170-27176 | 3.7  | 9  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 92 | High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction. <i>Physical Chemistry Chemical Physics</i> , <b>2016</b> , 18, 3780-7              | 3.6  | 13 |
| 91 | Synthesis and characterization of perovskite-type (Li,Sr)(Zr,Nb)O3 quaternary solid electrolyte for all-solid-state batteries. <i>Journal of Power Sources</i> , <b>2016</b> , 306, 623-629                                                 | 8.9  | 35 |
| 90 | Electronic and ionic co-conductive coating on the separator towards high-performance lithium Bulfur batteries. <i>Journal of Power Sources</i> , <b>2016</b> , 306, 347-353                                                                 | 8.9  | 62 |
| 89 | A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. <i>Chemical Communications</i> , <b>2016</b> , 52, 1637-40                                                                                                    | 5.8  | 96 |
| 88 | CNT@MnO2 Hybrid as Cathode Catalysts Toward Long-Life Lithium Oxygen Batteries. <i>ChemistrySelect</i> , <b>2016</b> , 1, 6749-6754                                                                                                         | 1.8  | 6  |
| 87 | Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. <i>Scientific Reports</i> , <b>2016</b> , 6, 19564                                                                                                 | 4.9  | 72 |
| 86 | Cobalt-Metal-Based Cathode for Lithium Dxygen Battery with Improved Electrochemical Performance. ACS Catalysis, 2016, 6, 4149-4153                                                                                                          | 13.1 | 34 |
| 85 | FeS2 microsphere as cathode material for rechargeable lithium batteries. <i>Solid State Ionics</i> , <b>2016</b> , 290, 47-52                                                                                                               | 3.3  | 16 |
| 84 | Controlling uniform deposition of discharge products at the nanoscale for rechargeable NaD2 batteries. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 7238-7244                                                                 | 13   | 22 |
| 83 | Influence of a surface modified Li anode on the electrochemical performance of LiB batteries. <i>RSC Advances</i> , <b>2016</b> , 6, 40270-40276                                                                                            | 3.7  | 24 |
| 82 | Enhancing cyclability and rate performance of Li2MoO4 by carbon coating. <i>Materials Letters</i> , <b>2016</b> , 177, 54-57                                                                                                                | 3.3  | 12 |
| 81 | Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. <i>Nano Energy</i> , <b>2016</b> , 27, 647-657                                                                     | 17.1 | 52 |
| 80 | Enhanced performance of lithium sulfur batteries with conductive polymer modified separators.<br>Journal of Materials Chemistry A, <b>2016</b> , 4, 16968-16974                                                                             | 13   | 82 |
| 79 | Highly active mixed-valent MnOx spheres constructed by nanocrystals as efficient catalysts for long-cycle LiD2 batteries. <i>Journal of Materials Chemistry A</i> , <b>2016</b> , 4, 17129-17137                                            | 13   | 22 |
| 78 | Protected Sulfur Cathode with Mixed Conductive Coating Layer for Lithium Sulfur Battery. <i>Jom</i> , <b>2016</b> , 68, 2601-2606                                                                                                           | 2.1  | 4  |
| 77 | Open mesoporous spherical shell structured Co3O4 with highly efficient catalytic performance in LiD2 batteries. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 7600-7606                                                        | 13   | 35 |
| 76 | Synthesis and characterization of CaZr0.95In0.05O3 <b>B</b> aCe0.9Y0.1O3 <b>c</b> omposite ceramics. <i>Solid State Ionics</i> , <b>2015</b> , 275, 39-42                                                                                   | 3.3  |    |

| 75             | Improved protonic conductivity and Vickers hardness for lanthanum tungstate with potassium doping (La,K)28IW4+O54+. <i>Solid State Ionics</i> , <b>2015</b> , 278, 69-77                                                        | 3.3  | 2   |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 74             | Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. <i>Solid State Ionics</i> , <b>2015</b> , 279, 11-17                                         | 3.3  | 35  |
| 73             | Wave-like free-standing NiCo2O4 cathode for lithiumBxygen battery with high discharge capacity.<br>Journal of Power Sources, <b>2015</b> , 294, 593-601                                                                         | 8.9  | 33  |
| 7 <del>2</del> | Synthesis, sinterability, conductivity and reducibility of K+ and W6+ double doped La2Mo2O9. <i>Solid State Ionics</i> , <b>2015</b> , 276, 90-97                                                                               | 3.3  | 2   |
| 71             | A novel facile way to synthesize proton-conducting Ba(Ce,Zr,Y)O3 solid solution with improved sinterability and electrical performance. <i>Journal of the European Ceramic Society</i> , <b>2015</b> , 35, 2109-2117            | 6    | 7   |
| 70             | Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance. <i>Electrochimica Acta</i> , <b>2015</b> , 168, 234-239                          | 6.7  | 39  |
| 69             | The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study. <i>Physical Chemistry Chemical Physics</i> , <b>2015</b> , 17, 14605-12               | 3.6  | 60  |
| 68             | Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery.  Journal of the American Chemical Society, 2015, 137, 13572-9                                                               | 16.4 | 80  |
| 67             | A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 19815-19821                                      | 13   | 34  |
| 66             | Enhanced proton conduction of BaZr0.9Y0.1O3 - by hybrid doping of ZnO and Na3PO4. <i>Solid State lonics</i> , <b>2015</b> , 281, 6-11                                                                                           | 3.3  | 12  |
| 65             | One-Step Solvothermal Synthesis of Nanostructured Manganese Fluoride as an Anode for Rechargeable Lithium-Ion Batteries and Insights into the Conversion Mechanism. <i>Advanced Energy Materials</i> , <b>2015</b> , 5, 1401716 | 21.8 | 83  |
| 64             | Vinylene carbonatelliNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. <i>Electrochemistry Communications</i> , <b>2015</b> , 51, 59-63                                             | 5.1  | 192 |
| 63             | Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium Dxygen batteries. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 2568-2571                                    | 13   | 65  |
| 62             | Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a LiD2 Battery. <i>ACS Catalysis</i> , <b>2015</b> , 5, 73-81                                                                                  | 13.1 | 118 |
| 61             | Improvement of lithium storage performance of Sn-alloy anode materials by a polypyrrole protective layer. <i>Journal of Power Sources</i> , <b>2015</b> , 274, 1100-1106                                                        | 8.9  | 5   |
| 60             | Air Electrode for the LithiumAir Batteries: Materials and Structure Designs. <i>ChemPlusChem</i> , <b>2015</b> , 80, 270-287                                                                                                    | 2.8  | 66  |
| 59             | Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. <i>Journal of Power Sources</i> , <b>2015</b> , 273, 511-516                                          | 8.9  | 139 |
| 58             | Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions. <i>ACS Nano</i> , <b>2015</b> , 9, 12464-72                                       | 16.7 | 215 |

## (2014-2015)

| 57 | Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. <i>Journal of Power Sources</i> , <b>2015</b> , 282, 286-293                                                         | 8.9               | 80  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 56 | A selenium@polypyrrole hollow sphere cathode for rechargeable lithium batteries. <i>RSC Advances</i> , <b>2015</b> , 5, 20346-20350                                                                                                                        | 3.7               | 19  |
| 55 | Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. <i>Journal of Power Sources</i> , <b>2014</b> , 254, 353-359                                                                                    | 8.9               | 132 |
| 54 | Modified Pechini Synthesis of Proton-Conducting Ba(Ce,Ti)O3 and Comparative Studies of the Effects of Acceptors on its Structure, Stability, Sinterability, and Conductivity. <i>Journal of the American Ceramic Society</i> , <b>2014</b> , 97, 1103-1109 | 3.8               | 8   |
| 53 | Porous iron oxide coating on Palumina ceramics for Na-based batteries. <i>Solid State Ionics</i> , <b>2014</b> , 262, 133-137                                                                                                                              | 3.3               | 10  |
| 52 | Studies of rare earth elements to distinguish nephrite samples from different deposits using direct current glow discharge mass spectrometry. <i>Journal of Analytical Atomic Spectrometry</i> , <b>2014</b> , 29, 2064-20                                 | o <del>3</del> ∙7 | 12  |
| 51 | Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , <b>2014</b> , 16, 8556-62    | 3.6               | 37  |
| 50 | Enhanced cycle performance of a LiB battery based on a protected lithium anode. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 19355-19359                                                                                                     | 13                | 112 |
| 49 | Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , <b>2014</b> , 2, 10350-10354                                                                             | 13                | 101 |
| 48 | Enhanced conductivity of lanthanum niobate proton conductor by A and B-site co-doping: Synthesis, phase, microstructure and transport properties. <i>Solid State Ionics</i> , <b>2014</b> , 268, 326-329                                                   | 3.3               | 10  |
| 47 | High rate LiMn2O4/carbon nanotube composite prepared by a two-step hydrothermal process.<br>Journal of Power Sources, <b>2014</b> , 268, 491-497                                                                                                           | 8.9               | 18  |
| 46 | Enhancement of long stability of Liß battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. <i>RSC Advances</i> , <b>2014</b> , 4, 21612-21618                                                                                 | 3.7               | 45  |
| 45 | A lithium anode protection guided highly-stable lithium-sulfur battery. <i>Chemical Communications</i> , <b>2014</b> , 50, 14209-12                                                                                                                        | 5.8               | 316 |
| 44 | A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. <i>Physical Chemistry Chemical Physics</i> , <b>2014</b> , 16, 21225-9                                                                                                         | 3.6               | 153 |
| 43 | Improvement of the sealing performance for sodium anode based battery by interface optimization of alpha-Al2O3/glass sealant. <i>Solid State Ionics</i> , <b>2014</b> , 263, 140-145                                                                       | 3.3               | 1   |
| 42 | Solgel synthesis of Mg2+ stabilized Na-E/FAl2O3 solid electrolyte for sodium anode battery.  Journal of Alloys and Compounds, <b>2014</b> , 613, 80-86                                                                                                     | 5.7               | 32  |
| 41 | Enhanced cycle performance of LiB battery with a polypyrrole functional interlayer. <i>Journal of Power Sources</i> , <b>2014</b> , 267, 542-546                                                                                                           | 8.9               | 117 |
| 40 | The enhanced performance of LiB battery with P14YRTFSI-modified electrolyte. <i>Solid State Ionics</i> , <b>2014</b> , 262, 174-178                                                                                                                        | 3.3               | 34  |

| 39 | Main Challenges for High Performance NAS Battery: Materials and Interfaces. <i>Advanced Functional Materials</i> , <b>2013</b> , 23, 1005-1018                                                            | 15.6                | 164 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|
| 38 | Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications. <i>Journal of Power Sources</i> , <b>2013</b> , 240, 786-795                                      | 8.9                 | 18  |
| 37 | Influence of In doping on the structure, stability and electrical conduction behavior of Ba(Ce,Ti)O3 solid solution. <i>Journal of Alloys and Compounds</i> , <b>2013</b> , 554, 378-384                  | 5.7                 | 14  |
| 36 | Worm-like mesoporous structured iron-based fluoride: Facile preparation and application as cathodes for rechargeable lithium ion batteries. <i>Journal of Power Sources</i> , <b>2013</b> , 244, 306-311  | 8.9                 | 15  |
| 35 | Functional binder for high-performance LiD2 batteries. <i>Journal of Power Sources</i> , <b>2013</b> , 244, 614-619                                                                                       | 8.9                 | 13  |
| 34 | Flexible self-supporting grapheneBulfur paper for lithium sulfur batteries. RSC Advances, 2013, 3, 2558                                                                                                   | 3.7                 | 106 |
| 33 | Improvement of the sealing performance of sodium anode battery by an in-situ gradient modification method. <i>Solid State Ionics</i> , <b>2013</b> , 236, 11-15                                           | 3.3                 | 1   |
| 32 | Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. <i>Microporous and Mesoporous Materials</i> , <b>2013</b> , 169, 242-247                       | 5.3                 | 73  |
| 31 | Synthesis of Na-E/EAl2O3 nanorods in an ionic liquid. <i>Journal of Materials Research</i> , <b>2013</b> , 28, 2017-2022                                                                                  | 2.5                 | 1   |
| 30 | New Applications of Solid State Ionics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 116                                                                                                 | 3 <sub>1</sub> 1164 | . 3 |
| 29 | A composite of sulfur and polypyrrolefhulti walled carbon combinatorial nanotube as cathode for Li/S battery. <i>Journal of Power Sources</i> , <b>2012</b> , 206, 409-413                                | 8.9                 | 128 |
| 28 | A tubular polypyrrole based air electrode with improved O2 diffusivity for LiD2 batteries. <i>Energy and Environmental Science</i> , <b>2012</b> , 5, 7893                                                | 35.4                | 112 |
| 27 | Low-cost shape-control synthesis of porous carbon film on P-alumina ceramics for Na-based battery application. <i>Journal of Power Sources</i> , <b>2012</b> , 219, 1-8                                   | 8.9                 | 22  |
| 26 | Mesoporous Co3O4 with different porosities as catalysts for the lithiumBxygen cell. <i>Solid State Ionics</i> , <b>2012</b> , 225, 598-603                                                                | 3.3                 | 49  |
| 25 | Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. <i>Solid State Ionics</i> , <b>2012</b> , 225, 604-607                                                             | 3.3                 | 72  |
| 24 | Proton conducting CaZr0.9In0.1O3-literamic membrane prepared by tape casting. <i>Solid State Ionics</i> , <b>2012</b> , 225, 291-296                                                                      | 3.3                 | 4   |
| 23 | Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. <i>Journal of Solid State Electrochemistry</i> , <b>2012</b> , 16, 1863-1868 | 2.6                 | 61  |
| 22 | A free-standing-type design for cathodes of rechargeable LiD2 batteries. <i>Energy and Environmental Science</i> , <b>2011</b> , 4, 4727                                                                  | 35.4                | 276 |

#### (2004-2011)

| 21 | Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries.  Journal of Power Sources, <b>2011</b> , 196, 8091-8097                                                                                   | 8.9          | 199 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 20 | Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. <i>Journal of Power Sources</i> , <b>2011</b> , 196, 9839-9843                                                                                 | 8.9          | 407 |
| 19 | A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium ulfur batteries. <i>Journal of Power Sources</i> , <b>2011</b> , 196, 6951-6955                                                                               | 8.9          | 213 |
| 18 | Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. <i>Journal of Power Sources</i> , <b>2011</b> , 196, 3655-3658                                                  | 8.9          | 219 |
| 17 | A Stable and Easily Sintering SrCeO3-Based Proton Conductor by a Polymerizable Complex Method. <i>Integrated Ferroelectrics</i> , <b>2010</b> , 115, 25-33                                                                                | 0.8          |     |
| 16 | New glass-ceramic sealants for Na/S battery. <i>Journal of Solid State Electrochemistry</i> , <b>2010</b> , 14, 1735-174                                                                                                                  | <b>0</b> 2.6 | 18  |
| 15 | Scandia-stabilized zirconia-impregnated (La, Sr)MnO3 cathode for tubular solid oxide fuel cells.<br>Journal of Solid State Electrochemistry, <b>2010</b> , 14, 1923-1928                                                                  | 2.6          | 8   |
| 14 | Mechanochemical synthesis of Na-四-Al2O3. <i>Journal of Solid State Electrochemistry</i> , <b>2010</b> , 14, 1821-1827                                                                                                                     | 2.6          | 15  |
| 13 | Preparation and characterization of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , <b>2010</b> , 14, 1807-1811                                          | 2.6          | 20  |
| 12 | A novel Bi-doped borosilicate glass as sealant for sodium sulfur battery. Part 1: Thermophysical characteristics and structure. <i>Journal of Power Sources</i> , <b>2010</b> , 195, 384-388                                              | 8.9          | 22  |
| 11 | Electrical conductivity of fully densified nano CaZr0.90In0.10O3 Recramics prepared by a water-based gel precipitation method. <i>Solid State Ionics</i> , <b>2009</b> , 180, 154-159                                                     | 3.3          | 7   |
| 10 | Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. <i>Journal of Power Sources</i> , <b>2008</b> , 184, 641-645                                    | 8.9          | 50  |
| 9  | Fabrication of dense CaZr0.90In0.10O3leeramics from the fine powders prepared by an optimized solid-state reaction method. <i>Solid State Ionics</i> , <b>2008</b> , 179, 1108-1111                                                       | 3.3          | 15  |
| 8  | Research on sodium sulfur battery for energy storage. Solid State Ionics, 2008, 179, 1697-1701                                                                                                                                            | 3.3          | 142 |
| 7  | Preparation and electrochemical properties of Li[Ni1/3Co1/3Mn1½/3Zrx/3]O2 cathode materials for Li-ion batteries. <i>Journal of Power Sources</i> , <b>2007</b> , 174, 544-547                                                            | 8.9          | 23  |
| 6  | Lithium Ion-Conducting Glassteramics of Li1.5Al0.5Ge1.5(PO4)3\( \text{Li2O} \) (x=0.0\( \text{D}.20 \)) with Good Electrical and Electrochemical Properties. <i>Journal of the American Ceramic Society</i> , <b>2007</b> , 90, 2802-2806 | 3.8          | 184 |
| 5  | Research on spray-dried lithium titanate as electrode materials for lithium ion batteries. <i>Journal of Power Sources</i> , <b>2005</b> , 146, 670-673                                                                                   | 8.9          | 38  |
| 4  | Preparation and electrochemical performance of Ag doped Li4Ti5O12. <i>Electrochemistry Communications</i> , <b>2004</b> , 6, 1093-1097                                                                                                    | 5.1          | 214 |

| 3 | An investigation of poly(ethylene oxide)/saponite-based composite electrolytes. <i>Journal of Power Sources</i> , <b>2003</b> , 119-121, 427-431           | 8.9  | 14 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 2 | Effects of alumina whisker in (PEO)8[liClO4-based composite polymer electrolytes. <i>Solid State Ionics</i> , <b>2002</b> , 148, 185-191                   | 3.3  | 40 |
| 1 | Microregion Welding Strategy Prevents the Formation of Inactive Sulfur Species for High-Performance Liß Battery. <i>Advanced Energy Materials</i> ,2102024 | 21.8 | 5  |