Elisabete Moreira Assaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7994023/publications.pdf Version: 2024-02-01

101	1 (5 2	66343	114465
121	4,653	42	63
papers	citations	h-index	g-index
122	122	122	4081
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 2004, 134, 27-32.	7.8	224
2	Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. Journal of Power Sources, 2003, 124, 99-103.	7.8	207
3	Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals. International Journal of Hydrogen Energy, 2009, 34, 5049-5060.	7.1	173
4	Combination of dry reforming and partial oxidation of methane on NiO–MgO–ZrO2 catalyst: Effect of nickel content. Fuel Processing Technology, 2013, 106, 247-252.	7.2	136
5	Ni catalysts with Mo promoter for methane steam reforming. Fuel, 2009, 88, 1547-1553.	6.4	126
6	Effect of the Y2O3–ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Applied Catalysis A: General, 2009, 352, 179-187.	4.3	121
7	Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Applied Catalysis A: General, 2009, 358, 215-223.	4.3	115
8	Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors. Applied Surface Science, 2013, 280, 876-887.	6.1	112
9	Effect of CaO addition on acid properties of Ni–Ca/Al2O3 catalysts applied to ethanol steam reforming. International Journal of Hydrogen Energy, 2013, 38, 4407-4417.	7.1	88
10	Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. Journal of Power Sources, 2009, 190, 525-533.	7.8	86
11	Production of hydrogen by ethanol steam reforming on Co/Al2O3 catalysts: Effect of addition of small quantities of noble metals. Journal of Power Sources, 2008, 175, 482-489.	7.8	83
12	Catalytic steam reforming of acetic acid as a model compound of bio-oil. Applied Catalysis B: Environmental, 2014, 160-161, 188-199.	20.2	79
13	Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions. Applied Catalysis A: General, 2007, 333, 90-95.	4.3	78
14	Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method. Fuel Processing Technology, 2016, 142, 182-191.	7.2	75
15	Methane conversion reactions on Ni catalysts promoted with Rh: Influence of support. Applied Catalysis A: General, 2011, 400, 156-165.	4.3	74
16	Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions. Applied Surface Science, 2009, 255, 5851-5856.	6.1	73
17	Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming. Journal of Power Sources, 2006, 159, 667-672.	7.8	70
18	Synthesis of NiO–MgO–ZrO2 catalysts and their performance in reforming of model biogas. Applied Catalysis A: General, 2011, 397, 138-144.	4.3	70

#	Article	IF	CITATIONS
19	Nickel catalysts supported on ZrO2, Y2O3-stabilized ZrO2 and CaO-stabilized ZrO2 for the steam reforming of ethanol: Effect of the support and nickel load. Journal of Power Sources, 2008, 177, 24-32.	7.8	67
20	Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors. Journal of Power Sources, 2005, 142, 154-159.	7.8	66
21	Effects of adding La and Ce to hydrotalcite-type Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions. Applied Catalysis A: General, 2010, 388, 77-85.	4.3	66
22	Ni supported on La2O3–SiO2 used to catalyze glycerol steam reforming. Fuel, 2013, 105, 358-363.	6.4	64
23	Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system. Journal of Power Sources, 2005, 145, 50-54.	7.8	62
24	Mechanism of CO Tolerance on Molybdenum-Based Electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2004, 151, A944.	2.9	60
25	Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel, 2008, 87, 2076-2081.	6.4	58
26	Reforming of a model biogas on Ni and Rh–Ni catalysts: Effect of adding La. Fuel Processing Technology, 2012, 102, 124-131.	7.2	56
27	Ethanol steam reforming over rhodium and cobalt-based catalysts: Effect of the support. International Journal of Hydrogen Energy, 2012, 37, 3213-3224.	7.1	54
28	Oxidative reforming of model biogas over NiO–Y2O3–ZrO2 catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 1-12.	20.2	54
29	Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid: Representative compound for the aqueous phase of bio-oil derived from biomass. Catalysis Today, 2013, 213, 2-8.	4.4	54
30	Ethanol steam reforming for production of hydrogen on magnesium aluminate-supported cobalt catalysts promoted by noble metals. Applied Catalysis A: General, 2009, 360, 17-25.	4.3	53
31	Ni catalyst on mixed support of CeO2–ZrO2 and Al2O3: Effect of composition of CeO2–ZrO2 solid solution on the methane steam reforming reaction. Fuel Processing Technology, 2012, 102, 140-145.	7.2	53
32	Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Processing Technology, 2014, 128, 432-440.	7.2	52
33	Enzymatic Esterification of Oleic Acid with Aliphatic Alcohols for the Biodiesel Production by Candida antarctica Lipase. Catalysis Letters, 2013, 143, 863-872.	2.6	51
34	Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. Journal of CO2 Utilization, 2020, 41, 101215.	6.8	51
35	Carbon dioxide reforming of ethanol over Ni/Y2O3–ZrO2 catalysts. Applied Catalysis B: Environmental, 2009, 90, 485-488.	20.2	50
36	CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Metals, 2020, 39, 230-240.	7.1	49

#	Article	IF	CITATIONS
37	Catalytic ethanolysis of soybean oil with immobilized lipase from Candida antarctica and 1H NMR and GC quantification of the ethyl esters (biodiesel) produced. Applied Catalysis A: General, 2011, 392, 136-142.	4.3	48
38	Co catalysts supported on SiO2 and γ-Al2O3 applied to ethanol steam reforming: Effect of the solvent used in the catalyst preparation method. Fuel, 2011, 90, 1424-1430.	6.4	48
39	Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition. Biomass and Bioenergy, 2014, 60, 8-17.	5.7	48
40	Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts. Catalysis Today, 2017, 289, 96-104.	4.4	48
41	Partial oxidation of methane on NiO–MgO–ZrO2 catalysts. Fuel, 2012, 97, 630-637.	6.4	47
42	Hydrogen production and purification from the water–gas shift reaction on CuO/CeO2–TiO2 catalysts. Applied Energy, 2013, 112, 52-59.	10.1	45
43	Effect of ionic liquid in Ni/ZrO2 catalysts applied to syngas production by methane tri-reforming. International Journal of Hydrogen Energy, 2019, 44, 9316-9327.	7.1	44
44	Study of Co/CeO 2 -γ-Al 2 O 3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Processing Technology, 2014, 128, 134-145.	7.2	43
45	Reduction of NO by CO on Cu/ZrO2/Al2O3 catalysts: Characterization and catalytic activities. Fuel, 2009, 88, 1673-1679.	6.4	40
46	Double bed reactor for the simultaneous steam reforming of ethanol and water gas shift reactions. International Journal of Hydrogen Energy, 2006, 31, 1204-1209.	7.1	38
47	Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane. Chemical Engineering Journal, 2016, 290, 438-453.	12.7	38
48	Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). Applied Catalysis A: General, 2012, 431-432, 25-32.	4.3	37
49	Hexagonal-Nb2O5/Anatase-TiO2 mixtures and their applications in the removal of Methylene Blue dye under various conditions. Materials Chemistry and Physics, 2017, 198, 331-340.	4.0	37
50	Syngas for Fischer-Tropsch synthesis by methane tri-reforming using nickel supported on MgAl2O4 promoted with Zr, Ce and Ce-Zr. Applied Surface Science, 2019, 481, 747-760.	6.1	36
51	Hydrogen production by steam reforming of ethanol over Co3O4/La2O3/CeO2 catalysts synthesized by one-step polymerization method. Applied Catalysis A: General, 2014, 483, 52-62.	4.3	35
52	Catalytic features of Ni supported on CeO ₂ –ZrO ₂ solid solution in the steam reforming of glycerol for syngas production. RSC Advances, 2014, 4, 31142.	3.6	33
53	Influence of MgO content as an additive on the performance of Ni/MgO SiO2 catalysts for the steam reforming of glycerol. International Journal of Hydrogen Energy, 2017, 42, 16979-16990.	7.1	32
54	CuFe and CuCo supported on pillared clay as catalysts for CO2 hydrogenation into value-added products in one-step. Molecular Catalysis, 2018, 458, 297-306.	2.0	32

#	Article	IF	CITATIONS
55	Hydrogen purification for fuel cell using CuO/CeO2–Al2O3 catalyst. Journal of Power Sources, 2011, 196, 747-753.	7.8	31
56	Hydrotalcites derived catalysts for syngas production from biogas reforming: Effect of nickel and cerium load. Catalysis Today, 2017, 289, 78-88.	4.4	31
57	Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio. International Journal of Hydrogen Energy, 2020, 45, 8418-8432.	7.1	31
58	Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions. Applied Catalysis B: Environmental, 2008, 84, 106-111.	20.2	29
59	Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 2022, 427, 130947.	12.7	29
60	Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 302, 120842.	20.2	29
61	X-ZrO2 addition (X= Ce, La, Y and Sm) on Ni/MgAl2O4 applied to methane tri-reforming for syngas production. Journal of CO2 Utilization, 2019, 33, 273-283.	6.8	28
62	CuO and CuO–ZnO catalysts supported on CeO2 and CeO2–LaO3 for low temperature water–gas shift reaction. Fuel Processing Technology, 2010, 91, 1438-1445.	7.2	25
63	Active copper species of co-precipitated copper-ceria catalysts in the CO-PROX reaction: An in situ XANES and DRIFTS study. Catalysis Today, 2021, 381, 42-49.	4.4	24
64	Hydrogen production from oxidative reforming of methane on Ni/γ-Al2O3 catalysts: Effect of support promotion with La, La–Ce and La–Zr. Fuel Processing Technology, 2014, 127, 97-104.	7.2	23
65	Study of La2â^'xCaxCuO4 perovskites for the low temperature water gas shift reaction. Applied Catalysis A: General, 2012, 413-414, 85-93.	4.3	22
66	Structural, vibrational and morphological properties of layered double hydroxides containing Ni2+, Zn2+, Al3+ and Zr4+ cations. Materials Characterization, 2017, 125, 29-36.	4.4	22
67	Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: The influence of the variation of support synthesis conditions. Applied Surface Science, 2014, 317, 350-359.	6.1	20
68	Effect of Mg substitution on LaTi _{1â^'x} Mg _x O _{3+δ} catalysts for improving the C2 selectivity of the oxidative coupling of methane. Catalysis Science and Technology, 2021, 11, 283-296.	4.1	20
69	Syngas production by methane tri-reforming: Effect of Ni/CeO2 synthesis method on oxygen vacancies and coke formation. Journal of CO2 Utilization, 2022, 56, 101853.	6.8	20
70	Effects of adding basic oxides of La and/or Ce to SiO ₂ -supported Co catalysts for ethanol steam reforming. RSC Advances, 2014, 4, 43839-43849.	3.6	19
71	Surface interaction of CO2/H2 mixture on mesoporous ZrO2: Effect of crystalline polymorph phases. Applied Surface Science, 2019, 496, 143671.	6.1	19
72	New insights about the effect of the synthesis method on the CuO CeO2 redox properties and catalytic performance towards CO-PROX reaction for fuel cell applications. Journal of Environmental Management, 2019, 242, 272-278.	7.8	19

#	Article	IF	CITATIONS
73	CO preferential oxidation (CO-PROx) on La1â^'xCexNiO3 perovskites. Catalysis Communications, 2011, 12, 703-706.	3.3	18
74	Nanosized Pt-containing Al2O3 as an efficient catalyst to avoid coking and sintering in steam reforming of glycerol. RSC Advances, 2014, 4, 61771-61780.	3.6	18
75	Catalytic hydrogenation of CO 2 into methanol and dimethyl ether over Cu-X/V-Al PILC (X = Ce and Nb) catalysts. Catalysis Today, 2017, 289, 173-180.	4.4	18
76	Effect of preparation method on the performance of Ni/MgO SiO2 catalysts for glycerol steam reforming. Journal of the Energy Institute, 2019, 92, 947-958.	5.3	18
77	Preparation and characterization of alumina-supported Co and Ag/Co catalysts. Materials Research, 2003, 6, 535-539.	1.3	17
78	Steam reforming of ethanol for hydrogen production on Co/CeO2–ZrO2 catalysts prepared by polymerization method. Materials Chemistry and Physics, 2012, 132, 1029-1034.	4.0	17
79	Low-pressure hydrogenation of CO2 to methanol over Ni-Ga alloys synthesized by a surfactant-assisted co-precipitation method and a proposed mechanism by DRIFTS analysis. Catalysis Today, 2021, 381, 261-271.	4.4	17
80	Photocatalytic activity of Nb heterostructure (NaNbO3/Na2Nb4O11) and Nb/clay materials in the degradation of organic compounds. Solar Energy, 2019, 194, 37-46.	6.1	16
81	Adjusting Process Variables in Methane Tri-reforming to Achieve Suitable Syngas Quality and Low Coke Deposition. Energy & Fuels, 2020, 34, 16522-16531.	5.1	16
82	Cu-Modified SrTiO ₃ Perovskites Toward Enhanced Water–Gas Shift Catalysis: A Combined Experimental and Computational Study. ACS Applied Energy Materials, 2021, 4, 452-461.	5.1	15
83	Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3. Quimica Nova, 2007, 30, 339-345.	0.3	14
84	Study of Water–Gas-Shift Reaction over La(1â^'y)SryNixCo(1â^'x)O3 Perovskite as Precursors. Topics in Catalysis, 2011, 54, 210-218.	2.8	14
85	In situ study of copper reduction in SrTi _{1â^'x} Cu _x O ₃ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2070-2079.	2.8	14
86	Promoting effects of indium doped Cu/CeO ₂ catalysts on CO ₂ hydrogenation to methanol. Reaction Chemistry and Engineering, 2022, 7, 1589-1602.	3.7	14
87	Cobalt catalysts derived from hydrotalcite-type precursors applied to steam reforming of ethanol. Catalysis Communications, 2011, 12, 1286-1290.	3.3	13
88	Thermal runaway of ethylene oxidation reactors: Prevision through neuronal networks. Chemical Engineering Science, 1996, 51, 3107-3112.	3.8	12
89	Effects of the partial replacement of La by M (M=Ce, Ca and Sr) in La2-xMxCuO4 perovskites on catalysis of the water-gas shift reaction. Journal of Natural Gas Chemistry, 2010, 19, 567-574.	1.8	12
90	Biocatalytic Production of Ethyl Esters (Biodiesel) by Enzymatic Transesterification from Synthetic Triolein. Current Catalysis, 2013, 2, 53-61.	0.5	12

#	Article	IF	CITATIONS
91	OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT. Brazilian Journal of Chemical Engineering, 2016, 33, 627-636.	1.3	12
92	MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR: AN ISOTHERMIC MODEL. Brazilian Journal of Chemical Engineering, 1998, 15, 160-166.	1.3	12
93	Exploiting oxidative coupling of methane performed over La ₂ (Ce _{1â^`x} Mg _x) ₂ O _{7â^`î} catalysts with disordered defective cubic fluorite structure. Catalysis Science and Technology, 2021, 11, 4471-4481.	4.1	11
94	Efeito do teor metálico em catalisadores Co/Al2O3 aplicados à reação de reforma a vapor de etanol. Quimica Nova, 2005, 28, 587-590.	0.3	10
95	Óxidos do tipo perovskita para reação de redução de no com CO. Quimica Nova, 2009, 32, 1129-1133.	0.3	10
96	Biogas reforming over Ni catalysts dispersed in different mixed oxides containing Zn2+, Al3+ and Zr4+cations. Materials Research Bulletin, 2018, 102, 186-195.	5.2	10
97	NiMgAlCe Catalysts Applied to Reforming of a Model Biogas for Syngas Production. Catalysis Letters, 2018, 148, 979-991.	2.6	10
98	Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol. Fuel, 2019, 254, 115592.	6.4	10
99	Study of Ni/CeO2–ZnO catalysts in the production of H2 from acetone steam reforming. International Journal of Hydrogen Energy, 2019, 44, 12628-12635.	7.1	10
100	Effect of the Synthesis Method on Physicochemical Properties and Performance of Cu/ZnO/Nb ₂ O ₅ Catalysts for CO ₂ Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 18750-18758.	3.7	10
101	La2â^'xCexCu1â^'yZnyO4 perovskites for high temperature water-gas shift reaction. Journal of Natural Gas Chemistry, 2009, 18, 131-138.	1.8	9
102	Ethanol Steam Reforming by Ni Catalysts for H2 Production: Evaluation of Gd Effect in CeO2 Support. Catalysis Letters, 2022, 152, 3125-3145.	2.6	9
103	Performance of cobalt catalysts supported on CexZr1â^'xO2 (0Â<ÂxÂ<Â1) solid solutions in oxidative ethanol reforming. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 181-197.	1.7	8
104	Catalytic oxidation of n-hexane promoted by Ce1â^'xCuxO2 catalysts prepared by one-step polymeric precursor method. Materials Chemistry and Physics, 2013, 142, 677-681.	4.0	8
105	Alternative route for the synthesis of high surface-area ÎAl2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 2016, 184, 23-30.	4.0	8
106	Stabilization of atomically dispersed rhodium sites on ceria-based supports under reaction conditions probed by in situ infrared spectroscopy. Materials Letters, 2020, 277, 128354.	2.6	7
107	Structural transformation of vanadate nanotubes into vanadate oxides nanostructures during the dry reforming of methane. Molecular Catalysis, 2020, 480, 110641.	2.0	6
108	Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano. Quimica Nova, 2003, 26, 181-187.	0.3	5

#	Article	IF	CITATIONS
109	Cu and Ni Catalysts Supported on \hat{I}^3 -Al2O3and SiO2Assessed in Glycerol Steam Reforming Reaction. Journal of the Brazilian Chemical Society, 2014, , .	0.6	5
110	Production of light hydrocarbons at atmospheric pressure from CO2 hydrogenation using CexZr(1-x)O2 iron-based catalysts. Journal of CO2 Utilization, 2022, 55, 101805.	6.8	5
111	Influence of the preparation method on the structural properties of mixed metal oxides. Science and Technology of Materials, 2018, 30, 166-173.	0.8	4
112	Methanol to C ₂ and C ₄ fuels over (Nb/Al)-pillared clay catalysts. RSC Advances, 2016, 6, 27915-27921.	3.6	3
113	Synthesis of NiO/Y2O3/ZrO2 Catalysts Prepared by One-Step Polymerization Method and Their Use in the Syngas Production from Methane. International Journal of Chemical Engineering, 2018, 2018, 1-11.	2.4	2
114	Statistical modeling applied to the oxidative coupling of methane reaction over porous (SrxLa1-x)CeO mixed oxides for optimization of C2 yield, C2 selectivity, and C2H4 selectivity. Chemical Engineering Journal Advances, 2021, 7, 100119.	5.2	2
115	Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides. , 2019, , 13-40.		2
116	Ni/La2O3-SiO2Catalysts Applied to Glycerol Steam Reforming Reaction: Effect of the Preparation Method and Reaction Temperature. Journal of the Brazilian Chemical Society, 2014, , .	0.6	2
117	Synthesis-Gas Production from Methane over Ni/CeO2 Catalysts Synthesized by Co-Precipitation Method in Different Solvents. Methane, 2022, 1, 72-81.	2.2	2
118	Influence of Al, Cr, Ga, or Zr as promoters on the performance of Cu/ZnO catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 2022, 528, 112512.	2.0	2
119	Efeito da adição de lantânio em catalisadores de Ni/ZrO2 aplicados na reação de reforma a vapor de etanol. Quimica Nova, 2012, 35, 510-516.	0.3	1
120	Catalysts applied in biogas reforming: phases behavior study during the H2 reduction and dry reforming by in situ X-ray diffraction. Brazilian Journal of Chemical Engineering, 2022, 39, 645-659.	1.3	1
121	Overall Insights into Sustainable Utilization of Methane and Carbon Dioxide in Heterogeneous Catalysis. Engineering Materials, 2021, , 237-270.	0.6	0