Marc A Meyers

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7994020/marc-a-meyers-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,934 81 160 402 h-index g-index citations papers 8.1 32,708 7.45 452 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
402	Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. <i>Journal of Materials Research and Technology</i> , 2022 , 17, 1868-1895	5.5	5
401	The role of pre-existing heterogeneities in materials under shock and spall. <i>Applied Physics Reviews</i> , 2022 , 9, 011305	17.3	3
400	Design of high-pressure iron Rayleigh Daylor strength experiments for the National Ignition Facility. <i>Journal of Applied Physics</i> , 2022 , 131, 145902	2.5	
399	Digital healthcare technologies: Modern tools to transform prosthetic care. <i>Expert Review of Medical Devices</i> , 2021 , 1-16	3.5	0
398	Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. <i>Journal of Alloys and Compounds</i> , 2021 , 162567	5.7	2
397	Bite force mechanics and allometry of piranha (Serrasalmidae). <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 115, 104296	4.1	1
396	Micro-mechanical response of ultrafine grain and nanocrystalline tantalum. <i>Journal of Materials Research and Technology</i> , 2021 , 12, 1804-1815	5.5	3
395	Reprint of:The materials science of skin: Analysis, characterization, and modeling. <i>Progress in Materials Science</i> , 2021 , 120, 100816	42.2	O
394	Hydration-induced reversible deformation of biological materials. <i>Nature Reviews Materials</i> , 2021 , 6, 264-283	73.3	17
393	Shear localization in metallic materials at high strain rates. <i>Progress in Materials Science</i> , 2021 , 119, 1007	7 55 .2	20
392	Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing. <i>Additive Manufacturing</i> , 2021 , 37, 101647	6.1	5
391	Hydration-induced reversible deformation of the pine cone. <i>Acta Biomaterialia</i> , 2021 , 128, 370-383	10.8	7
390	Tooth structure, mechanical properties, and diet specialization of Piranha and Pacu (Serrasalmidae): A comparative study. <i>Acta Biomaterialia</i> , 2021 , 134, 531-545	10.8	2
389	Engineering with keratin: A functional material and a source of bioinspiration. <i>IScience</i> , 2021 , 24, 102798	86.1	10
388	The role of pre-existing defects in shock-generated ejecta in copper. <i>Journal of Applied Physics</i> , 2021 , 130, 075101	2.5	O
387	Towards the ultimate strength of iron: spalling through laser shock. <i>Acta Materialia</i> , 2021 , 215, 117072	8.4	11
386	Additive manufacturing of structural ceramics: a historical perspective. <i>Journal of Materials Research and Technology</i> , 2021 , 15, 670-695	5.5	3

(2019-2021)

385	Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. <i>Science Advances</i> , 2021 , 7,	14.3	45
384	Active defense mechanisms of thorny catfish. <i>Materials Today</i> , 2020 , 38, 35-48	21.8	3
383	Cholla cactus frames as lightweight and torsionally tough biological materials. <i>Acta Biomaterialia</i> , 2020 , 112, 213-224	10.8	5
382	The toughness of porcine skin: Quantitative measurements and microstructural characterization. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 109, 103848	4.1	4
381	Constitutive description of skin dermis: Through analytical continuum and coarse-grained approaches for multi-scale understanding. <i>Acta Biomaterialia</i> , 2020 , 106, 208-224	10.8	6
380	The materials science of skin: Analysis, characterization, and modeling. <i>Progress in Materials Science</i> , 2020 , 110, 100634	42.2	16
379	On the Strength of Hair across Species. <i>Matter</i> , 2020 , 2, 136-149	12.7	8
378	Molecular dynamics simulations of ejecta formation in helium-implanted copper. <i>Scripta Materialia</i> , 2020 , 178, 114-118	5.6	7
377	Offering Toughness and Protection, Arapaima Scales Provide Effective Defense against Predation. <i>Matter</i> , 2020 , 3, 1979-1980	12.7	
376	On the gular sac tissue of the brown pelican: Structural characterization and mechanical properties. <i>Acta Biomaterialia</i> , 2020 , 118, 161-181	10.8	О
375	Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. <i>Matter</i> , 2020 , 3, 842-863	12.7	15
374	A review of impact resistant biological and bioinspired materials and structures. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 15705-15738	5.5	23
373	The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium. <i>Acta Materialia</i> , 2019 , 181, 408-422	8.4	18
372	Tensile behavior and structural characterization of pig dermis. <i>Acta Biomaterialia</i> , 2019 , 86, 77-95	10.8	33
371	On the Nature of the Transparent Teeth of the Deep-Sea Dragonfish, Aristostomias scintillans. <i>Matter</i> , 2019 , 1, 235-249	12.7	12
370	External Field Assisted Freeze Casting. <i>Ceramics</i> , 2019 , 2, 208-234	1.7	17
369	Bioinspired avian feather designs. <i>Materials Science and Engineering C</i> , 2019 , 105, 110066	8.3	6
368	Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2019 , 131, 204-220	5	32

367	Arapaima Fish Scale: One of the Toughest Flexible Biological Materials. <i>Matter</i> , 2019 , 1, 1557-1566	12.7	17
366	Bioinspired composite segmented armour: Numerical simulations. <i>Journal of Materials Research and Technology</i> , 2019 , 8, 1274-1287	5.5	15
365	Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. <i>Progress in Materials Science</i> , 2019 , 102, 296-345	42.2	306
364	Lessons from the Ocean: Whale Baleen Fracture Resistance. <i>Advanced Materials</i> , 2019 , 31, e1804574	24	22
363	Scaling of bird wings and feathers for efficient flight. Science Advances, 2019, 5, eaat4269	14.3	12
362	Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. <i>Progress in Materials Science</i> , 2019 , 103, 425-483	42.2	46
361	Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. <i>Acta Materialia</i> , 2018 , 151, 424-431	8.4	88
360	Fragmentation and mechanical performance of tailored nickel-aluminum laminate compacts. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 123-132	5.3	1
359	Shock-induced amorphization in silicon carbide. <i>Acta Materialia</i> , 2018 , 158, 206-213	8.4	41
358	Spall strength dependence on grain size and strain rate in tantalum. Acta Materialia, 2018, 158, 313-329	8.4	57
357	A comparative analysis of the avian skull: Woodpeckers and chickens. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 84, 273-280	4.1	8
356	Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. <i>Advanced Materials</i> , 2018 , 30, e1800940	24	98
355	Novel Defense Mechanisms in the Armor of the Scales of the Living Fossil Coelacanth Fish. <i>Advanced Functional Materials</i> , 2018 , 28, 1804237	15.6	37
354	Shock-induced Amorphization in Covalently Bonded Solids. <i>EPJ Web of Conferences</i> , 2018 , 183, 03027	0.3	4
353	Shear localization of fcc high-entropy alloys. <i>EPJ Web of Conferences</i> , 2018 , 183, 03028	0.3	3
352	Hydration-Induced Shape and Strength Recovery of the Feather. <i>Advanced Functional Materials</i> , 2018 , 28, 1801250	15.6	7
351	Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis. <i>Advanced Functional Materials</i> , 2018 , 28, 1803073	15.6	32
350	On the ultimate tensile strength of tantalum. <i>Acta Materialia</i> , 2017 , 126, 313-328	8.4	57

(2017-2017)

349	Structural characterization and viscoelastic constitutive modeling of skin. <i>Acta Biomaterialia</i> , 2017 , 53, 460-469	10.8	34
348	High-velocity deformation of AlCoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. <i>Scientific Reports</i> , 2017 , 7, 42742	4.9	85
347	Deformation and failure in extreme regimes by high-energy pulsed lasers: A review. <i>Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 688, 429-458	5.3	41
346	Nature's technical ceramic: the avian eggshell. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	18
345	Extreme lightweight structures: avian feathers and bones. <i>Materials Today</i> , 2017 , 20, 377-391	21.8	61
344	Simulation of tantalum nanocrystals under shock-wave loading: Dislocations and twinning 2017 ,		12
343	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. <i>Progress in Materials Science</i> , 2017 , 88, 467-498	42.2	331
342	Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum 2017 ,		10
341	Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales. Journal of the Mechanical Behavior of Biomedical Materials, 2017 , 76, 30-37	4.1	8
340	Dynamic deformation and failure of ultrafine-grained titanium. <i>Acta Materialia</i> , 2017 , 125, 210-218	8.4	59
339	Structure and mechanical behavior of human hair. <i>Materials Science and Engineering C</i> , 2017 , 73, 152-163	3 8.3	72
338	Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square. <i>Advanced Science</i> , 2017 , 4, 1600360	13.6	21
337	Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9791-9796	11.5	34
336	Viscoelastic properties of ⊞keratin fibers in hair. <i>Acta Biomaterialia</i> , 2017 , 64, 15-28	10.8	16
335	Reinforcements in avian wing bones: Experiments, analysis, and modeling. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017 , 76, 85-96	4.1	14
334	Reversible Attachment with Tailored Permeability: The Feather Vane and Bioinspired Designs. <i>Advanced Functional Materials</i> , 2017 , 27, 1702954	15.6	13
333	Seagull feather shaft: Correlation between structure and mechanical response. <i>Acta Biomaterialia</i> , 2017 , 48, 270-288	10.8	22
332	A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017 , 73, 1-16	4.1	34

331	The organic interlamellar layer in abalone nacre: Formation and mechanical response. <i>Materials Science and Engineering C</i> , 2016 , 58, 7-13	8.3	19
330	Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. <i>Progress in Materials Science</i> , 2016 , 76, 229-318	42.2	376
329	Directional amorphization of boron carbide subjected to laser shock compression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12088-12093	11.5	58
328	Supersonic Dislocation Bursts in Silicon. <i>Scientific Reports</i> , 2016 , 6, 26977	4.9	15
327	Fragmentation and constitutive response of tailored mesostructured aluminum compacts. <i>Journal of Applied Physics</i> , 2016 , 119, 145903	2.5	11
326	Shock compression of [001] single crystal silicon. <i>European Physical Journal: Special Topics</i> , 2016 , 225, 335-341	2.3	3
325	Symmetric tilt boundaries in body-centered cubic tantalum. Scripta Materialia, 2016, 116, 108-111	5.6	29
324	Reproducibility of ZrO2-based freeze casting for biomaterials. <i>Materials Science and Engineering C</i> , 2016 , 61, 105-12	8.3	40
323	Amorphization and nanocrystallization of silicon under shock compression. <i>Acta Materialia</i> , 2016 , 103, 519-533	8.4	77
322	Structure and mechanical properties of selected protective systems in marine organisms. <i>Materials Science and Engineering C</i> , 2016 , 59, 1143-1167	8.3	56
321	Microstructural and geometric influences in the protective scales of Atractosteus spatula. <i>Journal of the Royal Society Interface</i> , 2016 , 13,	4.1	7
320	Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. <i>Acta Materialia</i> , 2016 , 114, 67-79	8.4	21
319	Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. <i>Acta Biomaterialia</i> , 2016 , 41, 60-74	10.8	75
318	A lightweight, biological structure with tailored stiffness: The feather vane. <i>Acta Biomaterialia</i> , 2016 , 41, 27-39	10.8	37
317	Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 4468-4477	2.3	8
316	Grain-size dependent mechanical behavior of nanocrystalline metals. <i>Materials Science & amp;</i> Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015 , 646, 101-134	5.3	129
315	The materials science of collagen. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 52, 22-50	4.1	141
314	Braze welding of cobalt with a silverdopper filler. <i>Journal of Materials Research and Technology</i> , 2015 , 4, 44-59	5.5	4

313	The armored carapace of the boxfish. <i>Acta Biomaterialia</i> , 2015 , 23, 1-10	10.8	46
312	BIOMECHANICS. Why the seahorse tail is square. <i>Science</i> , 2015 , 349, aaa6683	33.3	59
311	Mechanical properties and corrosion resistance of hot extruded MgI.5ZnIICa alloy. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2015 , 195, 50-58	3.1	30
310	On the tear resistance of skin. <i>Nature Communications</i> , 2015 , 6, 6649	17.4	206
309	Leatherback sea turtle shell: A tough and flexible biological design. <i>Acta Biomaterialia</i> , 2015 , 28, 2-12	10.8	53
308	Pressure and shear-induced amorphization of silicon. <i>Extreme Mechanics Letters</i> , 2015 , 5, 74-80	3.9	33
307	Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. <i>Composite Structures</i> , 2015 , 119, 174-184	5.3	39
306	A Sustainable Substitute for Ivory: the Jarina Seed from the Amazon. <i>Scientific Reports</i> , 2015 , 5, 14387	4.9	6
305	Phase Transformation in Tantalum under Extreme Laser Deformation. <i>Scientific Reports</i> , 2015 , 5, 15064	4.9	26
304	Probing the character of ultra-fast dislocations. <i>Scientific Reports</i> , 2015 , 5, 16892	4.9	26
303	Failure mechanisms in cobalt welded with a silverdopper filler. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 645, 369-382	5.3	4
302	Structural Design Elements in Biological Materials: Application to Bioinspiration. <i>Advanced Materials</i> , 2015 , 27, 5455-76	24	316
301	Bioinspired composites from freeze casting with clathrate hydrates. <i>Materials & Design</i> , 2015 , 71, 62-67		26
300	Structure and mechanical properties of naturally occurring lightweight foam-filled cylinderthe peacock's tail coverts shaft and its components. <i>Acta Biomaterialia</i> , 2015 , 17, 137-51	10.8	40
299	Alligator osteoderms: mechanical behavior and hierarchical structure. <i>Materials Science and Engineering C</i> , 2014 , 35, 441-8	8.3	29
298	Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre. <i>Acta Biomaterialia</i> , 2014 , 10, 2056-64	10.8	48
297	Reinforcing Structures in Avian Wing Bones. <i>Ceramic Transactions</i> , 2014 , 47-56	0.1	2
296	Protective role of Arapaima gigas fish scales: structure and mechanical behavior. <i>Acta Biomaterialia</i> , 2014 , 10, 3599-614	10.8	115

295	Bioinspired Scaffolds with Varying Pore Architectures and Mechanical Properties. <i>Advanced Functional Materials</i> , 2014 , 24, 1978-1987	15.6	93
294	Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 613, 390-403	5.3	76
293	Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. <i>Acta Materialia</i> , 2014 , 78, 378-393	8.4	112
292	A Comparison on the Structural and Mechanical Properties of Untreated and Deproteinized Nacre. <i>Ceramic Transactions</i> , 2014 , 37-45	0.1	1
291	Porous Scaffolds: Bioinspired Scaffolds with Varying Pore Architectures and Mechanical Properties (Adv. Funct. Mater. 14/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2108-2108	15.6	
290	Structural Characterization and Compressive Behavior of the Boxfish Horn. <i>Ceramic Transactions</i> , 2014 , 105-112	0.1	1
289	Plastic deformation of a porous bcc metal containing nanometer sized voids. <i>Computational Materials Science</i> , 2014 , 88, 92-102	3.2	37
288	Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials 2014 ,		56
287	Biomimetic Materials by Freeze Casting. <i>Jom</i> , 2013 , 65, 720-727	2.1	52
286	Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. <i>Acta Biomaterialia</i> , 2013 , 9, 5876-89	10.8	86
285	Ultrafine grained titanium for biomedical applications: An overview of performance. <i>Journal of Materials Research and Technology</i> , 2013 , 2, 340-350	5.5	94
284	Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal. <i>Scripta Materialia</i> , 2013 , 68, 817-820	5.6	32
283	Isentropic/shock compression and recovery methodology for materials using high-amplitude laser pulses. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2013 , 578, 354-361	5.3	7
282	Laser compression of nanocrystalline tantalum. <i>Acta Materialia</i> , 2013 , 61, 7767-7780	8.4	41
281	Inverse Hall P etch relationship in nanocrystalline tantalum. <i>Materials Science & Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013</i> , 580, 414-426	5.3	74
280	Mechanical adaptability of the Bouligand-type structure in natural dermal armour. <i>Nature Communications</i> , 2013 , 4, 2634	17.4	202
279	Comparative study of carp otolith hardness: lapillus and asteriscus. <i>Materials Science and Engineering C</i> , 2013 , 33, 1876-81	8.3	14
278	Structural biological materials: critical mechanics-materials connections. <i>Science</i> , 2013 , 339, 773-9	33.3	669

(2012-2013)

277	Highly deformable bones: unusual deformation mechanisms of seahorse armor. <i>Acta Biomaterialia</i> , 2013 , 9, 6763-70	10.8	47
276	Natural flexible dermal armor. <i>Advanced Materials</i> , 2013 , 25, 31-48	24	241
275	Porous Hydroxyapatite-Polyhydroxybutyrate Composites Fabricated by a Novel Method Via Centrifugation. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2013 , 63-71	0.3	7
274	Magnetic enhancement of thermal conductivity in copperlarbon nanotube composites produced by electroless plating, freeze drying, and spark plasma sintering. <i>Materials Letters</i> , 2012 , 79, 256-258	3.3	41
273	Structure and micro-computed tomography-based finite element modeling of Toucan beak. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 9, 1-8	4.1	19
272	Biological materials: Functional adaptations and bioinspired designs. <i>Progress in Materials Science</i> , 2012 , 57, 1492-1704	42.2	457
271	Magnetic freeze casting inspired by nature. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 556, 741-750	5.3	100
270	Ductile tensile failure in metals through initiation and growth of nanosized voids. <i>Acta Materialia</i> , 2012 , 60, 4856-4865	8.4	64
269	Laser compression of monocrystalline tantalum. Acta Materialia, 2012, 60, 6601-6620	8.4	58
268	Nanostructural and Microstructural Aspects of Shear Localization at High-Strain Rates for Materials 2012 , 111-171		1
267	The Structure, Functions, and Mechanical Properties of Keratin. <i>Jom</i> , 2012 , 64, 449-468	2.1	190
266	Battle in the Amazon: Arapaima versus Piranha. <i>Advanced Engineering Materials</i> , 2012 , 14, B279-B288	3.5	67
265	Flexible Dermal Armor in Nature. <i>Jom</i> , 2012 , 64, 475-485	2.1	27
264	Quasi-static and dynamic response of explosively consolidated metal luminum powder mixtures. <i>Acta Materialia</i> , 2012 , 60, 1418-1432	8.4	43
263	Response of Ni/Al laminates to laser-driven compression. <i>Acta Materialia</i> , 2012 , 60, 3929-3942	8.4	26
262	Microchannelled hydroxyapatite components by sequential freeze drying and free pressureless spark plasma sintering. <i>Advances in Applied Ceramics</i> , 2012 , 111, 269-274	2.3	9
261	Growth and collapse of nanovoids in tantalum monocrystals loaded at high strain rate 2012,		2
260	Laser compression of nanocrystalline tantalum 2012 ,		2

259	Predation versus protection: Fish teeth and scales evaluated by nanoindentation. <i>Journal of Materials Research</i> , 2012 , 27, 100-112	2.5	63
258	Potential Bone Replacement Materials Prepared by Two Methods. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1418, 177		39
257	Mechanical properties and the laminate structure of Arapaima gigas scales. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 1145-56	4.1	114
256	Structure and mechanical properties of Saxidomus purpuratus biological shells. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 1514-30	4.1	48
255	Reaction in NiAl laminates by laser-shock compression and spalling. Acta Materialia, 2011, 59, 5276-528	78.4	27
254	Effects of geometry and intermetallic bonding on the mechanical response, spalling and fragmentation of NiAl laminates. <i>Acta Materialia</i> , 2011 , 59, 5869-5880	8.4	19
253	Armadillo armor: mechanical testing and micro-structural evaluation. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 713-22	4.1	98
252	Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 723-32	4.1	33
251	Growth and collapse of nanovoids in tantalum monocrystals. <i>Acta Materialia</i> , 2011 , 59, 1354-1372	8.4	71
250	Growth of nacre in abalone: Seasonal and feeding effects. <i>Materials Science and Engineering C</i> , 2011 , 31, 238-245	8.3	20
249	Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). <i>Materials Science and Engineering C</i> , 2011 , 31, 724-729	8.3	55
248	Dynamic nanoindentation of articular porcine cartilage. <i>Materials Science and Engineering C</i> , 2011 , 31, 789-795	8.3	48
247	Reprint of: Growth of nacre in abalone: Seasonal and feeding effects. <i>Materials Science and Engineering C</i> , 2011 , 31, 716-723	8.3	6
246	Biological materials: a materials science approach. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 626-57	4.1	128
245	The strength of single crystal copper under uniaxial shock compression at 100 GPa. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 065404	1.8	60
244	Response to Bhear ImpossibilityLomments on Void Growth by Dislocation EmissionLand Void Growth in Metals[IScripta Materialia, 2010, 63, 148-150]	5.6	16
243	News of MRS Members/Materials Researches. MRS Bulletin, 2010, 35, 343-343	3.2	
242	Sequential bone healing of immediately loaded mini-implants: histomorphometric and fluorescence analysis. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2010 , 137, 80-90	2.1	39

241	Laser shock-induced spalling and fragmentation in vanadium. Acta Materialia, 2010, 58, 4604-4628	8.4	45
240	Shock compression of monocrystalline copper: Experiments, characterization, and analysis. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 424-434	5.3	16
239	The dynamic behavior of materials: An introduction. <i>Jom</i> , 2010 , 62, 14-15	2.1	7
238	Laser shocking of materials: Toward the national ignition facility. <i>Jom</i> , 2010 , 62, 24-30	2.1	12
237	Spark plasma sintering of tantalum carbide. <i>Scripta Materialia</i> , 2010 , 63, 577-580	5.6	98
236	Mechanical behavior of prosthesis in Toucan beak (Ramphastos toco). <i>Materials Science and Engineering C</i> , 2010 , 30, 460-464	8.3	15
235	Energy absorbent natural materials and bioinspired design strategies: A review. <i>Materials Science and Engineering C</i> , 2010 , 30, 331-342	8.3	134
234	Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects. <i>Acta Materialia</i> , 2010 , 58, 4458-4477	8.4	131
233	Toucan and hornbill beaks: a comparative study. Acta Biomaterialia, 2010, 6, 331-43	10.8	51
232	Chapter 89 Dislocations in Shock Compression and Release. <i>Dislocations in Solids</i> , 2009 , 15, 91-197		34
231	Analysis and characterization by electron backscatter diffraction of microstructural evolution in the adiabatic shear bands in Fe-Cr-Ni alloys. <i>Journal of Materials Research</i> , 2009 , 24, 2617-2627	2.5	11
230	Underwater adhesion of abalone: The role of van der Waals and capillary forces. <i>Acta Materialia</i> , 2009 , 57, 4178-4185	8.4	36
229	The role of dislocations in the growth of nanosized voids in ductile failure of metals. <i>Jom</i> , 2009 , 61, 35-4	4 1 .1	47
228	Uniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized Solar Cells. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 1487-1491	3.8	9
227	The role of organic intertile layer in abalone nacre. <i>Materials Science and Engineering C</i> , 2009 , 29, 2398-2	2 & 150	54
226	Interfacial shear strength in abalone nacre. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2009 , 2, 607-12	4.1	89
226		4.1 2.1	89 50

223	EXPLOSIVE COMPATIONS OF INTERMETALLIC-FORMING POWDER MIXTURES FOR FABRICATING STRUCTURAL ENERGETIC MATERIALS 2009 ,		7
222	Dynamic recrystallization in the shear bands of FelIrNi monocrystal: Electron backscatter diffraction characterization. <i>Scripta Materialia</i> , 2008 , 58, 691-694	5.6	27
221	MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF PTFE/Al/W SYSTEM 2008,		4
220	Mechanical strength of abalone nacre: role of the soft organic layer. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 76-85	4.1	278
219	Structure and mechanical properties of selected biological materials. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 208-26	4.1	264
218	Effect of strain rate on the compressive mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2008 , 485, 681-689	5.3	17
217	Combustion synthesis/quasi-isostatic pressing of TiC0.7NiTi cermets: microstructure and transformation characteristics. <i>Journal of Materials Science</i> , 2008 , 43, 5905-5923	4.3	7
216	Combustion synthesis/quasi-isostatic pressing of TiCNiTi cermets: processing and mechanical response. <i>Journal of Materials Science</i> , 2008 , 43, 6513-6526	4.3	12
215	Advances in biological materials and biomaterials science. <i>Jom</i> , 2008 , 60, 18-18	2.1	
214	The cutting edge: Sharp biological materials. <i>Jom</i> , 2008 , 60, 19-24	2.1	33
214	The cutting edge: Sharp biological materials. <i>Jom</i> , 2008 , 60, 19-24 Biomedical applications of titanium and its alloys. <i>Jom</i> , 2008 , 60, 46-49	2.1	33 507
213	Biomedical applications of titanium and its alloys. <i>Jom</i> , 2008 , 60, 46-49 Biological materials science and engineering: Biological materials, biomaterials, and biomimetics.	2.1	507
213	Biomedical applications of titanium and its alloys. <i>Jom</i> , 2008 , 60, 46-49 Biological materials science and engineering: Biological materials, biomaterials, and biomimetics. <i>Jom</i> , 2008 , 60, 21-22	2.1	507
213	Biomedical applications of titanium and its alloys. <i>Jom</i> , 2008 , 60, 46-49 Biological materials science and engineering: Biological materials, biomaterials, and biomimetics. <i>Jom</i> , 2008 , 60, 21-22 Structural biological materials: Overview of current research. <i>Jom</i> , 2008 , 60, 23-32 Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum. <i>Metallurgical and</i>	2.1 2.1	507 8 21
213 212 211 210	Biological materials science and engineering: Biological materials, biomaterials, and biomimetics. Jom, 2008, 60, 21-22 Structural biological materials: Overview of current research. Jom, 2008, 60, 23-32 Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 181-189 Deformation Substructures and Their Transitions in Laser Shock@ompressed Copper-Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008,	2.1 2.1 2.1 2.3	507 8 21 57
213 212 211 210 209	Biomedical applications of titanium and its alloys. <i>Jom</i> , 2008 , 60, 46-49 Biological materials science and engineering: Biological materials, biomaterials, and biomimetics. <i>Jom</i> , 2008 , 60, 21-22 Structural biological materials: Overview of current research. <i>Jom</i> , 2008 , 60, 23-32 Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 181-189 Deformation Substructures and Their Transitions in Laser Shock@mpressed Copper-Aluminum Alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 304-321 Shear Localization in Dynamic Deformation: Microstructural Evolution. <i>Metallurgical and Materials</i>	2.1 2.1 2.3 2.3	507 8 21 57 32

205	Void growth in metals: Atomistic calculations. <i>Acta Materialia</i> , 2008 , 56, 3874-3886	8.4	196
204	Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals. <i>Acta Materialia</i> , 2008 , 56, 5584-5604	8.4	89
203	The growth of nacre in the abalone shell. <i>Acta Biomaterialia</i> , 2008 , 4, 131-8	10.8	95
202	Structure and mechanical properties of crab exoskeletons. <i>Acta Biomaterialia</i> , 2008 , 4, 587-96	10.8	308
201	High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 472, 308-315	5.3	71
200	The development of residual stresses in Ti6Al4V-Al3Ti metal-intermetallic laminate (MIL) composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 473, 49-57	5.3	41
199	Sequential bone healing of immediately loaded mini-implants. <i>American Journal of Orthodontics and Dentofacial Orthopedics</i> , 2008 , 134, 44-52	2.1	38
198	Libera ß in vivo de ß ns met l icos por mini-implantes ortodfiticos de Ti-6Al-4V. <i>Revista Materia</i> , 2007 , 12, 290-297	0.8	4
197	Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. <i>Acta Materialia</i> , 2007 , 55, 13-28	8.4	363
196	Densification of porous bodies in a granular pressure-transmitting medium. <i>Acta Materialia</i> , 2007 , 55, 1351-1366	8.4	14
195	Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. <i>Acta Biomaterialia</i> , 2007 , 3, 331-9	10.8	111
194	Damage evolution in Ti6Al4VAl3Ti metal-intermetallic laminate composites. <i>Materials Science</i> & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 443, 1-15	5.3	56
193	Dynamic response of single crystalline copper subjected to quasi-isentropic, gas-gun driven loading. <i>Materials Science & Microstructure and Processing</i> , 2007 , 463, 249-262	5.3	32
192	Instrumented anvil-on-rod tests for constitutive model validation and determination of strain-rate sensitivity of ultrafine-grained copper. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2007 , 464, 202-209	5.3	11
191	Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3047-3056	3.8	30
190	Shock Compression of Monocrystalline Copper: Atomistic Simulations. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 2681-2688	2.3	45
189	Fourth TMS Symposium on the Dynamic Behavior of Materials: Part I (Part II will be Published in a Subsequent Issue). <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 2603-2604	2.3	
188	Fourth TMS Symposium on the Dynamic Behavior of Materials: Part II (Part I was published in November 2007.). <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2007 , 38, 2859-2860	2.3	3

187	Biological materials science in the TMS world. <i>Jom</i> , 2006 , 58, 20-22	2.1	
186	Structural biological composites: An overview. <i>Jom</i> , 2006 , 58, 35-41	2.1	92
185	The deformation physics of nanocrystalline metals: Experiments, analysis, and computations. <i>Jom</i> , 2006 , 58, 41-48	2.1	65
184	Picosecond X-Ray Diffraction from Laser-Shocked Copper and Iron. <i>AIP Conference Proceedings</i> , 2006 ,	О	4
183	Material dynamics under extreme conditions of pressure and strain rate. <i>Materials Science and Technology</i> , 2006 , 22, 474-488	1.5	101
182	Deforming nanocrystalline nickel at ultrahigh strain rates. <i>Applied Physics Letters</i> , 2006 , 88, 061917	3.4	59
181	Ultrafine-grain-sized zirconium by dynamic deformation. Acta Materialia, 2006, 54, 4111-4127	8.4	89
180	In situ diffraction measurements of lattice response due to shock loading, including direct observation of the phase transition in iron. <i>International Journal of Impact Engineering</i> , 2006 , 33, 343-352	4	8
179	Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study. <i>Materials Science and Engineering C</i> , 2006 , 26, 1380-1389	8.3	108
178	The toucan beak: Structure and mechanical response. <i>Materials Science and Engineering C</i> , 2006 , 26, 141	2 8.13420	051
177	Mechanical properties of nanocrystalline materials. <i>Progress in Materials Science</i> , 2006 , 51, 427-556	42.2	3294
176	Atomistic modeling of shock-induced void collapse in copper. <i>Applied Physics Letters</i> , 2005 , 86, 161902	3.4	87
175	Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond x-ray diffraction. <i>Physical Review Letters</i> , 2005 , 95, 075502	7.4	233
174	Microstructural evolution in copper processed by severe plastic deformation. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 410-411, 290-	25/8	81
173	Laser shock compression of copper and copperBluminum alloys. <i>International Journal of Impact Engineering</i> , 2005 , 32, 473-507	4	50
172	Growth and structure in abalone shell. <i>Materials Science & Damp; Engineering A: Structural Materials:</i> Properties, Microstructure and Processing, 2005 , 390, 27-41	5.3	193
	Properties, Microstructure and Processing, 2005 , 390, 21-41		
171	Effect of shock compression method on the defect substructure in monocrystalline copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 409, 270-281	5.3	38

169	Laser-Induced Shock Compression of Copper and Copper Aluminum Alloys. <i>AIP Conference Proceedings</i> , 2004 ,	О	4
168	Modeling the elastic properties and damage evolution in TiAl3Ti metalihtermetallic laminate (MIL) composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2004 , 374, 10-26	5.3	61
167	Self organization of shear bands in stainless steel. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing,</i> 2004 , 384, 35-46	5.3	67
166	Symposium on dynamic deformation: Constitutive modeling, grain size, and other effects-in honor of prof. Ronald W. Armstrong foreword. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2545-2546	2.3	
165	Shear localization-martensitic transformation interactions in Fe-Cr-Ni monocrystal. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2575-2586	2.3	23
164	Materials science under extreme conditions of pressure and strain rate. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2587-2607	2.3	74
163	Laser-induced shock compression of copper: Orientation and pressure decay effects. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2633-2646	2.3	35
162	Effect of low-temperature shock compression on the microstructure and strength of copper. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2004 , 35, 2729-273	g 2 .3	17
161	Explosive welding of aluminum to aluminum: analysis, computations and experiments. <i>International Journal of Impact Engineering</i> , 2004 , 30, 1333-1351	4	114
160	Void growth by dislocation emission. <i>Acta Materialia</i> , 2004 , 52, 1397-1408	8.4	249
160 159	Void growth by dislocation emission. <i>Acta Materialia</i> , 2004 , 52, 1397-1408 Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425	8.4	249 81
	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta</i>		
159	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425 Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the	8.4	81
159 158	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425 Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the Slip-Twinning Transition. <i>Materials Science Forum</i> , 2004 , 465-466, 27-34 Laser shock compression of copper monocrystals: Mechanisms for dislocation and void generation.	8.4	81
159 158 157	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425 Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the Slip-Twinning Transition. <i>Materials Science Forum</i> , 2004 , 465-466, 27-34 Laser shock compression of copper monocrystals: Mechanisms for dislocation and void generation. <i>European Physical Journal Special Topics</i> , 2003 , 110, 851-856 Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. <i>International</i>	8.4	8 ₁ 3 5
159 158 157 156	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425 Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the Slip-Twinning Transition. <i>Materials Science Forum</i> , 2004 , 465-466, 27-34 Laser shock compression of copper monocrystals: Mechanisms for dislocation and void generation. <i>European Physical Journal Special Topics</i> , 2003 , 110, 851-856 Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. <i>International Journal of Impact Engineering</i> , 2003 , 28, 257-280 Strain-rate effects in rheological models of inelastic response. <i>International Journal of Plasticity</i> ,	8.4 0.4	81 3 5 38
159 158 157 156	Computational description of nanocrystalline deformation based on crystal plasticity. <i>Acta Materialia</i> , 2004 , 52, 4413-4425 Laser Induced Shock Defects in Copper Aluminum Alloys: Stacking Fault Energy Effects on the Slip-Twinning Transition. <i>Materials Science Forum</i> , 2004 , 465-466, 27-34 Laser shock compression of copper monocrystals: Mechanisms for dislocation and void generation. <i>European Physical Journal Special Topics</i> , 2003 , 110, 851-856 Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. <i>International Journal of Impact Engineering</i> , 2003 , 28, 257-280 Strain-rate effects in rheological models of inelastic response. <i>International Journal of Plasticity</i> , 2003 , 19, 1097-1118	8.4 0.4 4 7.6	81353846

High-pressure, high-strain-rate lattice response of shocked materials. *Physics of Plasmas*, **2003**, 10, 1569-**1.5**76 40 151 Multiple film plane diagnostic for shocked lattice measurements (invited). Review of Scientific 150 1.7 Instruments, 2003, 74, 1929-1934 THE ONSET OF TWINNING IN PLASTIC DEFORMATION AND MARTENSITIC TRANSFORMATIONS 149 1 **2003**, 221-231 Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science 148 146 & Engineering A: Structural Materials: Properties, Microstructure and Processing, **2002**, 322, 194-216 $^{5\cdot3}$ Combustion synthesis and quasi-isostatic densification of powder cermets. Journal of Materials 147 5.3 34 Processing Technology, 2002, 121, 157-166 Self-organization of shear bands in titanium and TiBAlAV alloy. Acta Materialia, 2002, 50, 575-596 146 8.4 221 Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper. AIP 145 O 1 Conference Proceedings, **2002**, Computational Modeling of the Shock Compression of Powders. AIP Conference Proceedings, 2002, 144 The onset of twinning in metals: a constitutive description. Acta Materialia, 2001, 49, 4025-4039 8.4 1187 143 Shear localization and recrystallization in dynamic deformation of 8090 Alli alloy. Materials Science & Director of the Structural Materials: Properties, Microstructure and Processing, 2001, 142 5.3 159 299, 287-295 On the effect of grain size on yield stress: extension into nanocrystalline domain. Materials Science 141 67 & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 854-861 Combustion synthesis/densification of an Al2O3TiB2 composite. Materials Science & Composite. Materials Science & Composite. Materials Science & Composite. 140 56 5.3 Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 311, 83-99 Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Materials Science & Engineering A: Structural Materials: Properties, 139 5.3 254 Microstructure and Processing, 2001, 317, 204-225 Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells. Materials Science 138 135 & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 297, 203-211 $^{5\cdot3}$ Analytical and computational description of effect of grain size on yield stress of metals. Acta 8.4 137 234 Materialia, 2001, 49, 2567-2582 136 Characterization by indentation of combustion synthesized cermets. Scripta Materialia, 2001, 44, 1139-14.66 Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales. 161 135 7.4 Physical Review Letters, 2001, 86, 2349-52 Self-organization of shear bands in stainless steel **2001**, 549-559 134

133 Dynamic behavior of silicon carbide **2001**, 209-217

132	Microstructural and micromechanical aspects of ceramic/long-rod projectile interactions 2001 , 437-446	5	4
131	Developing Solid-State Experiments on the Nova Laser. <i>Astrophysical Journal, Supplement Series</i> , 2000 , 127, 357-363	8	7
130	Damage evolution in dynamic deformation of silicon carbide. <i>Acta Materialia</i> , 2000 , 48, 2399-2420	8.4	99
129	Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. <i>Acta Materialia</i> , 2000 , 48, 2383-2398	8.4	299
128	Self-organization of shear bands in Ti, Ti-6%Al-4%V, and 304 stainless steel. <i>European Physical Journal Special Topics</i> , 2000 , 10, Pr9-269-Pr9-274		4
127	Solid-state experiments at high pressure and strain rate. <i>Physics of Plasmas</i> , 2000 , 7, 1999-2006	2.1	57
126	Observation and modeling of dynamic recrystallization in high-strain, high-strain rate deformation of metals. <i>European Physical Journal Special Topics</i> , 2000 , 10, Pr9-51-Pr9-56		14
125	Self-organization of adiabatic shear bands in Ti, Ti-6Al-4V and stainless steel. <i>AIP Conference Proceedings</i> , 2000 ,	0	3
124	Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser. <i>Review of Scientific Instruments</i> , 1999 , 70, 629-632	1.7	27
123	Shock consolidation: microstructurally-based analysis and computational modeling. <i>Acta Materialia</i> , 1999 , 47, 2089-2108	8.4	60
122	Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 268, 70-82	5.3	46
121	High pressure solid state experiments on the nova laser. <i>International Journal of Impact Engineering</i> , 1999 , 23, 409-419	4	3
120	On the negative poisson ratio in monocrystalline zinc. <i>Scripta Materialia</i> , 1999 , 40, 975-977	5.6	22
119	High-strain-rate deformation of granular silicon carbide. <i>Acta Materialia</i> , 1998 , 46, 4037-4065	8.4	53
118	Self-organization in the initiation of adiabatic shear bands. <i>Acta Materialia</i> , 1998 , 46, 327-340	8.4	89
117	Shear localization and chemical reaction in high-strain, high-strain-rate deformation of TiBi powder mixtures. <i>Acta Materialia</i> , 1998 , 46, 3033-3046	8.4	34
116	Strain-induced structural changes and chemical reactions II. Modelling of reactions in shear band. <i>Acta Materialia</i> , 1998 , 46, 5947-5963	8.4	22

115	Strain-induced structural changes and chemical reactions Thermomechanical and kinetic models. <i>Acta Materialia</i> , 1998 , 46, 5929-5945	8.4	42
114	Effect of strain rate on plastic flow and failure in polycrystalline tungsten. <i>Acta Materialia</i> , 1998 , 46, 62	68 . 629	9 0 73
113	High-strain-rate deformation and comminution of silicon carbide. <i>Journal of Applied Physics</i> , 1998 , 83, 4660-4671	2.5	57
112	Shear localization and chemical reaction in TiBi and NbBi powder mixtures: Thermochemical analysis. <i>Journal of Applied Physics</i> , 1998 , 84, 3098-3106	2.5	13
111	h-BN <- w-BN phase transition under dynamic-static compression. <i>Journal of Materials Science Letters</i> , 1997 , 16, 1625-1627		5
110	Shock-induced deformation twinning in tantalum. <i>Acta Materialia</i> , 1997 , 45, 157-175	8.4	126
109	High temperature shock consolidation of hard ceramic powders. <i>Physica B: Condensed Matter</i> , 1997 , 239, 1-5	2.8	30
108	Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 229, 23-41	5.3	137
107	Quasistatic and dynamic regimes of granular material deformation under impulse loading. <i>Journal of the Mechanics and Physics of Solids</i> , 1997 , 45, 1955-1999	5	59
106	Shear-Induced Exothermic Chemical Reactions. <i>European Physical Journal Special Topics</i> , 1997 , 07, C3-2	7-C3-3	2 2
106	Shear-Induced Exothermic Chemical Reactions. <i>European Physical Journal Special Topics</i> , 1997 , 07, C3-2 High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. <i>European Physical Journal Special Topics</i> , 1997 , 07, C3-435-C3-440	7-C3-3	2 2
	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum.	7-C3-3.	
105	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. European Physical Journal Special Topics, 1997, 07, C3-435-C3-440 Effect of Mo on microstructure and mechanical properties of TicNi-based cermets produced by combustion synthesisImpact forging technique. Materials Science & Engineering A: Structural		3
105	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. European Physical Journal Special Topics, 1997, 07, C3-435-C3-440 Effect of Mo on microstructure and mechanical properties of TicNi-based cermets produced by combustion synthesisImpact forging technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 71-80 An equation describing the consolidation of combustion synthesized titanium diboride. Materials	5.3	3 48
105 104 103	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. European Physical Journal Special Topics, 1997, 07, C3-435-C3-440 Effect of Mo on microstructure and mechanical properties of TiCNi-based cermets produced by combustion synthesisImpact forging technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 71-80 An equation describing the consolidation of combustion synthesized titanium diboride. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 107-110	5.3	3 48 4
105 104 103	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. European Physical Journal Special Topics, 1997, 07, C3-435-C3-440 Effect of Mo on microstructure and mechanical properties of TicNi-based cermets produced by combustion synthesisImpact forging technique. Materials Science & Deformation A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 71-80 An equation describing the consolidation of combustion synthesized titanium diboride. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 107-110 Shear localization in high-strain-rate deformation of granular alumina. Acta Materialia, 1996, 44, 2017-10	5.3 3.1 20 2.6	3 48 4
105 104 103 102	High-Strain, High-Strain Rate Deformation, Shear Localization and Recrystallization in Tantalum. European Physical Journal Special Topics, 1997, 07, C3-435-C3-440 Effect of Mo on microstructure and mechanical properties of TicNi-based cermets produced by combustion synthesisImpact forging technique. Materials Science & Define Activated Materials: Properties, Microstructure and Processing, 1996, 206, 71-80 An equation describing the consolidation of combustion synthesized titanium diboride. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 107-110 Shear localization in high-strain-rate deformation of granular alumina. Acta Materialia, 1996, 44, 2017-10 Dynamic consolidation/hot isostatic pressing of SiC. Journal of Materials Science, 1996, 31, 252-261 Combustion Synthesis/Dynamic Densification of a TiB2-SiC Composite. Journal of the American	5-3 3.1 202.6 4-3	3 48 4 45 9

(1993-1995)

97	High-strain, high-strain-rate behavior of tantalum. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 2493-2501	2.3	105
96	The structure of controlled shear bands in dynamically deformed reactive mixtures. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 2511-2519	2.3	36
95	The effect of grain size on the high-strain, high-strain-rate behavior of copper. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 2881-2893	2.3	223
94	Combustion synthesis in the Ti-C-Ni-Mo system: Part I. Micromechanisms. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 3001-3009	2.3	42
93	Combustion synthesis in the Ti-C-Ni-Mo system: Part II. Analysis. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 3011-3019	2.3	31
92	The one-step synthesis of dense titanium-carbide tiles. <i>Jom</i> , 1995 , 47, 23-25	2.1	5
91	Synthesis of nanocrystalline titanium carbide by spark erosion. <i>Scripta Metallurgica Et Materialia</i> , 1995 , 32, 805-808		24
90	Effect of shock pressure and plastic strain on chemical reactions in Nb?Si and Mo?Si systems. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, 150-158	5.3	26
89	Shock synthesis of nickel-aluminides. AIP Conference Proceedings, 1994,	O	1
88	1994,		1172
88 87	1994, Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994, 65, 3069-3	07314	1172 58
		07 314 3.3	
87	Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994 , 65, 3069-3 Evolution of microstructure and shear-band formation in £hcp titanium. <i>Mechanics of Materials</i> ,		58
87 86	Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994 , 65, 3069-3 Evolution of microstructure and shear-band formation in £hcp titanium. <i>Mechanics of Materials</i> , 1994 , 17, 175-193 Shock synthesis of silicides experimentation and microstructural evolution. <i>Acta Metallurgica Et</i>		58
86 86	Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994 , 65, 3069-3 Evolution of microstructure and shear-band formation in £hcp titanium. <i>Mechanics of Materials</i> , 1994 , 17, 175-193 Shock synthesis of silicides experimentation and microstructural evolution. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 701-714 Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. <i>Acta</i>		58 219 48
86 86 85	Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994 , 65, 3069-3 Evolution of microstructure and shear-band formation in Ehcp titanium. <i>Mechanics of Materials</i> , 1994 , 17, 175-193 Shock synthesis of silicides experimentation and microstructural evolution. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 701-714 Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 3183-3195 Shock synthesis of silicides II. Thermodynamics and kinetics. <i>Acta Metallurgica Et Materialia</i> , 1994 ,		58 219 48 318
86 86 85 84	Controlled high-rate localized shear in porous reactive media. <i>Applied Physics Letters</i> , 1994 , 65, 3069-3 Evolution of microstructure and shear-band formation in Ehcp titanium. <i>Mechanics of Materials</i> , 1994 , 17, 175-193 Shock synthesis of silicidesII experimentation and microstructural evolution. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 701-714 Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 3183-3195 Shock synthesis of silicidesII. Thermodynamics and kinetics. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 715-729 Constitutive description of work- and shock-hardened copper. <i>Scripta Metallurgica Et Materialia</i> ,		58 219 48 318

79	Identification of stress-induced nucleation sites for martensite in Fe-31.8 wt% Ni-0.02 wt% C alloy. <i>Acta Metallurgica Et Materialia</i> , 1992 , 40, 413-417		14
78	SHOCK SYNTHESIS OF SILICIDES 1992 , 629-632		1
77	Hot dynamic consolidation of hard ceramics. <i>Journal of Materials Science</i> , 1992 , 27, 5470-5476	3	27
76	Densification of Reaction-Synthesized Titanium Carbide by High-Velocity Forging. <i>Journal of the American Ceramic Society</i> , 1992 , 75, 592-602	.8	39
75	Dynamic compaction of titanium. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1992 , 23, 3251-3261		
74	Reaction synthesis/dynamic compaction of titanium diboride. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1992 , 23, 77-86		39
73	Microstructural characterization of self-propagating high-temperature synthesis/ dynamically compacted and hot-pressed titanium carbides. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1992 , 23, 87-97		31
72	Dynamic compaction of titanium aluminides by explosively generated shock waves: Microstructure and mechanical properties. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1992 , 23, 3251-3261		4
71	Shock consolidation of Al?Li alloy powders. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1991 , 132, 257-265	:.3	9
70	Shock densification/hot isostatic pressing of titanium aluminide. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1991 , 22, 2667-2676		10
69	Dynamic compaction of titanium aluminides by explosively generated shock waves: Experimental and materials systems. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1991 , 22, 685-695		36
68	Shock synthesis and synthesis-assisted shock consolidation of suicides. <i>Journal of Materials Science</i> , 1991 , 26, 601-611	3	35
67	Dynamic consolidation of rapidly solidified titanium alloy powders by explosives. <i>Journal of Materials Science</i> , 1991 , 26, 1277-1286	3	8
66	HIGH STRAIN, HIGH STRAIN-RATE DEFORMATION OF COPPER. <i>European Physical Journal Special Topics</i> , 1991 , 01, C3-11-C3-17		2
65	Effect of metallurgical parameters on shear band formation in low-carbon (~0.20 Wt Pct) steels. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1990 , 21, 3153-3164	ļ	70
64	Observation of an adiabatic shear band in AISI 4340 steel by high-voltage transmission electron microscopy. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1990 , 21, 707-716		103
63	Reaction-assisted shock consolidation of RSR TiAl alloys. <i>Journal of Materials Research</i> , 1990 , 5, 302-312 2	5	13
62	The prospects for superplasticity at high strain rates: Preliminary considerations and an example. <i>Scripta Metallurgica Et Materialia</i> , 1990 , 24, 605-610		59

61	Effect of stress state and microstructural parameters on impact damage of alumina-based ceramics. <i>Journal of Materials Science</i> , 1989 , 24, 2516-2532	4.3	43
60	An improved method for shock consolidation of powders. <i>Acta Metallurgica</i> , 1988 , 36, 925-936		98
59	Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4wt% Mn alloy. <i>Acta Metallurgica</i> , 1988 , 36, 1085-1098		17
58	Warm shock consolidation of IN 718 powder. <i>Journal of Materials Science</i> , 1988 , 23, 1786-1804	4.3	33
57	Synthesis of Novel Aluminide-Based Materials. <i>Jom</i> , 1988 , 40, 18-20	2.1	4
56	MARTENSITIC TRANSFORMATION INDUCED BY TENSILE STRESS PULSES. <i>Journal De Physique Colloque</i> , 1988 , 49, C3-355-C3-362		4
55	STRESS-WAVE-INDUCED DAMAGE IN ALUMINA. Journal De Physique Colloque, 1988, 49, C3-333-C3-338		2
54	Mossbauer study of shock-induced effects in the ordered alloy Fe50Ni50in meteorites. <i>Journal of Physics F: Metal Physics</i> , 1987 , 17, 1993-1997		12
53	Numerical Analysis of Adiabatic Shear Band in an Early Stage of Its Propagation 1987, 203-212		1
52	Kinetics of isothermal martensitic transformation. <i>Progress in Materials Science</i> , 1986 , 30, 1-37	42.2	55
51	Numerical modeling of the propagation of an adiabatic shear band. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1986 , 17, 443-450		13
50	Stresses induced in iron-ore pellets by hydrogen reduction. <i>Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science</i> , 1986 , 17, 217-227		6
49	Kinetics of martensitic transformation induced by a tensile stress pulse. <i>Acta Metallurgica</i> , 1986 , 34, 162	25-164	121
48	Observation of an adiabatic shear band in titanium by high-voltage transmission electron microscopy. <i>Acta Metallurgica</i> , 1986 , 34, 2493-2499		147
47	A continuous indentation test for metals. <i>Acta Metallurgica</i> , 1986 , 34, 313-324		6
46	Shock Consolidation of In-100 Nickel-Base Superalloy Powder 1986 , 731-736		2
45	Mechanical and thermal response of shock-consolidated Mar-M 200 rapidly-solidified powder. Journal of Materials Science, 1985 , 20, 2133-2140	4.3	16
44	Discussion of pressure-shear impact and the dynamic viscoplastic response of metals. <i>Mechanics of Materials</i> , 1985 , 4, 387-393	3.3	4

43	Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1985 , 16, 761-775		125
42	Inhomogeneities of shock-wave deformation in Fe-32 wt. % Ni-0.035 wt. % C alloy. <i>Journal of Applied Physics</i> , 1985 , 58, 2791-2794	2.5	3
41	MARTENSITIC TRANSFORMATION INDUCED BY TENSILE STRESS WAVES 1984 , 411-414		1
40	Dynamic fracture (spalling) of metals. <i>Progress in Materials Science</i> , 1983 , 28, 1-96	42.2	262
39	The effect of polycrystallinity on the shock wave response of Fe-34.5wt.%Ni and Fe-15wt.%Cr-15wt.%Ni. <i>Materials Science and Engineering</i> , 1983 , 57, 113-126		11
38	The attenuation of shock waves in nickel: Second report. <i>Materials Science and Engineering</i> , 1983 , 59, 235-249		19
37	Reply to comments on A model for the effect of grain size on the yield stress of metals Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1983, 48, L59-L61		
36	Propagation of Stress Waves in Metals 1983 , 17-82		2
35	Metallurgical Effects of Shock and Pressure Waves in Metals 1983 , 83-121		5
34	A model for the effect of grain size on the yield stress of metals. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1982 , 46, 737-759		228
33	Correlation between texture and substructure of conventionally and shock-wave-deformed aluminum. <i>Materials Science and Engineering</i> , 1982 , 54, 113-120		16
32	Shock-Wave Consolidation of Rapidly Solidified Superalloy Powders. <i>Journal of Metals</i> , 1981 , 33, 21-26		8
31	The effects of shock-loading temperature and pulse duration on the tensile response of AISI 304 stainless steel. <i>Materials Science and Engineering</i> , 1981 , 51, 261-263		11
30	Defect Generation in Shock-Wave Deformation 1981 , 487-530		26
29	The Attenuation of Shock Waves in Nickel 1981 , 433-452		О
28	Thermomechanical Processing by Shock Waves: An Overview 1981 , 805-826		
27	Design of Uniaxial Strain Shock Recovery Experiments 1981 , 341-373		26
26	On the growth of lenticular martensite. <i>Acta Metallurgica</i> , 1980 , 28, 757-770		16

25	The effects of temperature and pulse duration on the shock-loading response of nickel. <i>Materials Science and Engineering</i> , 1980 , 45, 143-152	10
24	A technique for obtaining shock-wave parameters using wave superposition in low-carbon steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1980, 11, 1737-1745	5
23	Comments on The electroplastic effect in aluminum Scripta Metallurgica, 1980, 14, 1033-1034	1
22	An estimate of the nucleation time in the martensitic transformation. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1979 , 10, 1723-1727	17
21	On stress-relaxation experiments and their significance under strain-aging conditions. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1979 , 10, 33-40	15
20	A model for the formation of annealing twins in F.C.C. metals and alloys. <i>Acta Metallurgica</i> , 1978 , 26, 951-962	175
19	A mechanism for dislocation generation in shock-wave deformation. Scripta Metallurgica, 1978, 12, 21-26	127
18	The Effects of Shock Loading and Grain Refining on the Kinetics of Deformation Induced Martensite in Fe-31% Ni-0.1%C. <i>Transactions of the Japan Institute of Metals</i> , 1977 , 18, 803-806	1
17	Concerning stress relaxation experiments in commercial purity titanium. <i>Scripta Metallurgica</i> , 1977 , 11, 193-195	6
16	Fractography of a metastable austenite. <i>Metallography</i> , 1977 , 10, 201-208	2
15	A model for elastic precursor waves in the shock loading of polycrystalline metals. <i>Materials Science and Engineering</i> , 1977 , 30, 99-111	35
14	Work softening in shock-loaded nickel. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1977 , 8, 1581-1583	17
13	Discussion of Eesidual strength of shock loaded RMI 38644 [Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977 , 8, 1641-1644	4
12	Comments on fl ow stress-grain size relationship in aluminum[] <i>Scripta Metallurgica</i> , 1976 , 10, 159-160	18
11	Inhomogeneities of transformation in shock-loaded type 304 stainless steel. <i>Scripta Metallurgica</i> , 1976 , 10, 255-256	1
10	Thermomechcmical processing of Inconel 718 by shock-wave deformation. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1976 , 7, 179-190	18
9	The effect of grain size on the shock-loading response of 304-type stainless steel. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1976 , 7, 1943-1950	14
8	The effect of grain size on the shock-loading response of 304-type stainless steel. <i>Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science</i> , 1976 , 7, 1943-1950	46

7	Shock-front irregularities in polycrystalline metals. <i>Materials Science and Engineering</i> , 1976 , 24, 131-135	33
6	Shock-induced martensite formation in a Fe-31% Ni-0.1% C alloy. <i>Materials Science and Engineering</i> , 1976 , 24, 289-292	10
5	The effect of surface condition on shock hardening. Scripta Metallurgica, 1975, 9, 667-669	4
4	A geometrical method for the determination and indexing of electron diffraction patterns. <i>Metallography</i> , 1974 , 7, 231-240	
3	Observations on the ferromagnetic Thase of the CuMnBn system. <i>Journal of Applied Crystallography</i> , 1973 , 6, 39-41	6
2	The enthalpies of formation of ferromagnetic Cu-Mn-Sn alloys. <i>Metallurgical and Materials</i> Transactions A - Physical Metallurgy and Materials Science, 1972 , 3, 2544-2544	O
1	Machanical Behavior of Materials/166-52/	2