Athel Cornish-Bowden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/799384/publications.pdf Version: 2024-02-01

		41627	25983
203	13,618	51	112
papers	citations	h-index	g-index
214	214	214	11542
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The essence of life revisited: how theories can shed light on it. Theory in Biosciences, 2022, 141, 105-123.	0.6	6
2	Zacharias Dische and the discovery of feedback inhibition: A landmark paper published in the forerunner of Biochimie. Biochimie, 2021, 182, 120-130.	1.3	2
3	Contrasting theories of life: Historical context, current theories. In search of an ideal theory. BioSystems, 2020, 188, 104063.	0.9	45
4	Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. Origins of Life and Evolution of Biospheres, 2019, 49, 111-145.	0.8	19
5	STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS Journal, 2018, 285, 2193-2204.	2.2	38
6	Rosennean Complexity and its relevance to ecology. Ecological Complexity, 2018, 35, 13-24.	1.4	16
7	Entropy-Enthalpy Compensation. , 2018, , 1-6.		0
8	Life before LUCA. Journal of Theoretical Biology, 2017, 434, 68-74.	0.8	40
9	Enthalpy–entropy compensation and the isokinetic temperature in enzyme catalysis. Journal of Biosciences, 2017, 42, 665-670.	0.5	18
10	Lynn Margulis and the origin of the eukaryotes. Journal of Theoretical Biology, 2017, 434, 1.	0.8	8
11	Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function. Journal of Biological Chemistry, 2016, 291, 26739-26749.	1.6	24
12	Time flies like an arrow: Fruit flies like a banana. Perspectives in Science, 2015, 6, 113-120.	0.6	0
13	Tibor Gánti and Robert Rosen: Contrasting approaches to the same problem. Journal of Theoretical Biology, 2015, 381, 6-10.	0.8	13
14	One hundred years of Michaelis–Menten kinetics. Perspectives in Science, 2015, 4, 3-9.	0.6	117
15	<i>Introduction</i> : Enzyme catalysis and allostery: a century of advances in molecular understanding. FEBS Journal, 2014, 281, 433-434.	2.2	3
16	Victor Henri: 111 years of his equation. Biochimie, 2014, 107, 161-166.	1.3	11
17	Understanding allosteric and cooperative interactions in enzymes. FEBS Journal, 2014, 281, 621-632.	2.2	58
18	Biochemistry and evolutionary biology: Two disciplines that need each other. Journal of Biosciences, 2014, 39, 13-27.	0.5	6

#	Article	IF	CITATIONS
19	Commemorating the 1913 Michaelis–Menten paper <i>Die Kinetik der Invertinwirkung</i> : three perspectives. FEBS Journal, 2014, 281, 435-463.	2.2	54
20	Analytical Kinetic Modeling: A Practical Procedure. Methods in Molecular Biology, 2014, 1090, 261-280.	0.4	3
21	Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful. Perspectives in Science, 2014, 1, 131-137.	0.6	65
22	Current IUBMB recommendations on enzyme nomenclature and kinetics. Perspectives in Science, 2014, 1, 74-87.	0.6	73
23	Subunit interactions in pig-kidney fructose-1,6-bisphosphatase: Binding of substrate induces a second class of site with lowered affinity and catalytic activity. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1798-1807.	1.1	3
24	Analysis and interpretation of enzyme kinetic data. Perspectives in Science, 2014, 1, 121-125.	0.6	23
25	Curbing the excesses of low demand. Nature, 2013, 500, 157-158.	13.7	4
26	Simulating a Model of Metabolic Closure. Biological Theory, 2013, 8, 383-390.	0.8	24
27	The origins of enzyme kinetics. FEBS Letters, 2013, 587, 2725-2730.	1.3	91
28	Introduction. FEBS Letters, 2013, 587, 2711-2711.	1.3	9
29	The physiological significance of negative cooperativity revisited. Journal of Theoretical Biology, 2013, 319, 144-147.	0.8	14
30	Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach. PLoS ONE, 2012, 7, e39480.	1.1	23
31	Size matters: Influence of stochasticity on the self-maintenance of a simple model of metabolic closure. Journal of Theoretical Biology, 2012, 300, 143-151.	0.8	12
32	From L'Homme Machine to metabolic closure: Steps towards understanding life. Journal of Theoretical Biology, 2011, 286, 100-113.	0.8	69
33	Recommendations for terminology and databases for biochemical thermodynamics. Biophysical Chemistry, 2011, 155, 89-103.	1.5	57
34	Closure to efficient causation, computability and artificial life. Journal of Theoretical Biology, 2010, 263, 79-92.	0.8	49
35	A large-scale protein-function database. Nature Chemical Biology, 2010, 6, 785-785.	3.9	22
36	Specificity of Non-Michaelisâ^'Menten Enzymes: Necessary Information for Analyzing Metabolic Pathways. Journal of Physical Chemistry B, 2010, 114, 16209-16213.	1.2	33

#	Article	IF	CITATIONS
37	Professor Robert A. Alberty—A Legacy of Excellence. Journal of Physical Chemistry B, 2010, 114, 16045-16046.	1.2	3
38	A Simple Self-Maintaining Metabolic System: Robustness, Autocatalysis, Bistability. PLoS Computational Biology, 2010, 6, e1000872.	1.5	52
39	Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Molecular Systems Biology, 2009, 5, 271.	3.2	107
40	How I became a biochemist. IUBMB Life, 2009, 62, NA-NA.	1.5	0
41	A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. Journal of Biosciences, 2009, 34, 853-872.	0.5	102
42	Reinhart Heinrich (1946–2006): An annotated bibliography. Journal of Theoretical Biology, 2008, 252, 379-387.	0.8	3
43	Monitoring the energy status of a living organism in real time. Journal of Biosciences, 2008, 33, 629-630.	0.5	0
44	Reinhart Heinrich (1946–2006). Journal of Theoretical Biology, 2008, 252, 377-378.	0.8	1
45	Self-organization at the origin of life. Journal of Theoretical Biology, 2008, 252, 411-418.	0.8	40
46	Organizational Invariance in (<i>M</i> , <i>R</i>)â€Systems. Chemistry and Biodiversity, 2007, 4, 2396-2406.	1.0	25
47	Beyond reductionism: Metabolic circularity as a guiding vision for a real biology of systems. Proteomics, 2007, 7, 839-845.	1.3	61
48	Synergy between verapamil and other multidrug-resistance modulators in model membranes. Journal of Biosciences, 2007, 32, 737-746.	0.5	10
49	The threat from creationism to the rational teaching of biology. Biological Research, 2007, 40, 113-22.	1.5	25
50	Putting the Systems Back into Systems Biology. Perspectives in Biology and Medicine, 2006, 49, 475-489.	0.3	42
51	Organizational invariance and metabolic closure: Analysis in terms of systems. Journal of Theoretical Biology, 2006, 238, 949-961.	0.8	119
52	Systems biology may work when we learn to understand the parts in terms of the whole. Biochemical Society Transactions, 2005, 33, 516-519.	1.6	36
53	The importance of uniformity in reporting protein-function data. Trends in Biochemical Sciences, 2005, 30, 11-12.	3.7	22
54	Enzymes in context: Kinetic characterization of enzymes for systems biology. Biochemist, 2005, 27, 11-14.	0.2	15

#	Article	IF	CITATIONS
55	Understanding the parts in terms of the whole. Biology of the Cell, 2004, 96, 713-717.	0.7	43
56	The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 2003, 19, 524-531.	1.8	2,811
57	Metabolic analysis in drug design. Comptes Rendus - Biologies, 2003, 326, 509-515.	0.1	20
58	Stoicheiometric analysis in studies of metabolism. Biochemical Society Transactions, 2002, 30, 43-46.	1.6	3
59	The Role of Stoichiometric Analysis in Studies of Metabolism: An Example. Journal of Theoretical Biology, 2002, 216, 179-191.	0.8	31
60	Enthalpy—entropy compensation: a phantom phenomenon. Journal of Biosciences, 2002, 27, 121-126.	0.5	218
61	Metabolic balance sheets. Nature, 2002, 420, 129-130.	13.7	15
62	Modulation of metabolite concentrations with no net effect on fluxes. Molecular Biology Reports, 2002, 29, 17-20.	1.0	3
63	Detection of Errors of Interpretation in Experiments in Enzyme Kinetics. Methods, 2001, 24, 181-190.	1.9	38
64	Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochemical Journal, 2001, 357, 263.	1.7	79
65	Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochemical Journal, 2001, 357, 263-268.	1.7	150
66	Information transfer in metabolic pathways. FEBS Journal, 2001, 268, 6616-6624.	0.2	42
67	Silent genes given voice. Nature, 2001, 409, 571-572.	13.7	37
68	Complex networks of interactions connect genes to phenotypes. Trends in Biochemical Sciences, 2001, 26, 463-465.	3.7	20
69	From genome to cellular phenotype—a role for metabolic flux analysis?. Nature Biotechnology, 2000, 18, 267-268.	9.4	52
70	Regulating the cellular economy of supply and demand. FEBS Letters, 2000, 476, 47-51.	1.3	184
71	Computer Simulation as A Tool for Studying Metabolism and Drug Design. , 2000, , 165-172.		5
72	Metabolic Analysis in Drug Discovery. Science, 2000, 288, 617-617.	6.0	2

5

#	Article	IF	CITATIONS
73	Metabolic complexity has no bearing on genetic determinism. Behavioral and Brain Sciences, 1999, 22, 889-890.	0.4	0
74	Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modelling metabolic pathways. FEBS Journal, 1999, 265, 671-679.	0.2	10
75	Enzyme kinetics from a metabolic perspective. Biochemical Society Transactions, 1999, 27, 281-284.	1.6	14
76	Two centuries of catalysis. Journal of Biosciences, 1998, 23, 87-92.	0.5	2
77	Evolution and regulatory role of the hexokinases. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1401, 242-264.	1.9	261
78	Prospects for Antiparasitic Drugs. Journal of Biological Chemistry, 1998, 273, 5500-5505.	1.6	65
79	Generalization of the double-modulation method for in situ determination of elasticities. Biochemical Journal, 1997, 327, 217-223.	1.7	10
80	Kinetics of Membrane-Bound Nitrate Reductase A from Escherichia Coli with Analogues of Physiological Electron Donors. Different Reaction Sites for Menadiol and Duroquinol. FEBS Journal, 1997, 250, 567-577.	0.2	30
81	Henrik Kacser (1918–1995): an Annotated Bibliography. Journal of Theoretical Biology, 1996, 182, 195-199.	0.8	4
82	Extending Double Modulation: Combinatorial Rules for Identifying the Modulations Necessary for Determining Elasticities in Metabolic Pathways. Journal of Theoretical Biology, 1996, 182, 361-369.	0.8	11
83	Co-response Analysis: A New Experimental Strategy for Metabolic Control Analysis. Journal of Theoretical Biology, 1996, 182, 371-380.	0.8	51
84	Kinetic Studies of a Soluble alphabeta Complex of Nitrate Reductase A from Escherichia Coli. Use of Various alphabeta Mutants with Altered beta Subunits. FEBS Journal, 1995, 234, 766-772.	0.2	25
85	Strategies for Manipulating Metabolic Fluxes in Biotechnology. Bioorganic Chemistry, 1995, 23, 439-449.	2.0	74
86	Metabolic Control Analysis in Theory and Practice. Advances in Molecular and Cell Biology, 1995, 11, 21-64.	0.1	26
87	Determination of control coefficients in intact metabolic systems. Biochemical Journal, 1994, 298, 367-375.	1.7	47
88	Product inhibition in mechanisms in which the free enzyme isomerizes. Biochemical Journal, 1994, 301, 621-623.	1.7	7
89	Kinetic implications of metabolite channelling in β-oxidation. Biochemical Society Transactions, 1994, 22, 451-454.	1.6	1
90	Recommendations for nomenclature and tables in biochemical thermodynamics (IUPAC) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50,62 Td (Re

6

#	Article	IF	CITATIONS
91	Taking enzyme kinetics out of control; putting control into regulation. FEBS Journal, 1993, 212, 833-837.	0.2	80
92	Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality?. FEBS Journal, 1993, 213, 87-92.	0.2	40
93	The pH dependence of the apparent equilibrium constant, K′, of a biochemical reaction. Trends in Biochemical Sciences, 1993, 18, 288-291.	3.7	21
94	A Control Analysis of Metabolic Regulation. , 1993, , 193-198.		1
95	Rounding error, an unexpected fault in the output from a recording spectrophotometer: implications for model discrimination. Biochemical Journal, 1993, 292, 37-40.	1.7	5
96	The competition plot: a simple test of whether two reactions occur at the same active site. Biochemical Journal, 1993, 289, 599-604.	1.7	74
97	Cornish-Bowden and Cárdenas reply. Trends in Biochemical Sciences, 1992, 17, 59.	3.7	1
98	Response coefficients of interconvertible enzyme cascades towards effectors that act on one or both modifier enzymes. FEBS Journal, 1992, 204, 807-813.	0.2	18
99	Hexokinase and â€~glucokinase' in liver metabolism. Trends in Biochemical Sciences, 1991, 16, 281-282.	3.7	27
100	Failure of channelling to maintain low concentrations of metabolic intermediates. FEBS Journal, 1991, 195, 103-108.	0.2	41
101	Quantitative assessment of regulation in metabolic systems. FEBS Journal, 1991, 200, 223-236.	0.2	126
102	How much effect on free metabolite concentrations does channelling have?. Journal of Theoretical Biology, 1991, 152, 39-40.	0.8	4
103	Parameter estimating procedures for the Michaelis-Menten model: Reply to Tseng and Hsu. Journal of Theoretical Biology, 1991, 153, 437-440.	0.8	6
104	MetaModel: a program for modelling and control analysis of metabolic pathways on the IBM PC and compatibles. Bioinformatics, 1991, 7, 89-93.	1.8	22
105	The Nature and Role of Theory in Metabolic Control. , 1990, , 31-40.		5
106	Metabolic control theory and biochemical systems theory: Different objectives, different assumptions, different results. Journal of Theoretical Biology, 1989, 136, 365-377.	0.8	34
107	Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector. Biochemical Journal, 1989, 257, 339-345.	1.7	65
108	Nonequilibrium Isotope Exchange Methods for Investigating Enzyme Mechanisms. Current Topics in Cellular Regulation, 1989, 30, 143-169.	9.6	2

#	Article	IF	CITATIONS
109	Saturation functions as a nested set. Journal of Theoretical Biology, 1988, 130, 125-126.	0.8	2
110	Significance of the purine-pyrimidine motif present in most gene groups. Journal of Theoretical Biology, 1988, 134, 1-7.	0.8	1
111	Convergent evolution of lysozyme sequences?. Nature, 1988, 332, 787-788.	13.7	5
112	Abrupt transitions in kinetic plots: an artifact of plotting procedures. Biochemical Journal, 1988, 250, 309-310.	1.7	7
113	Nomenclature of prenols (Recommendations 1986). Pure and Applied Chemistry, 1987, 59, 683-689.	0.9	8
114	Kinetics of hexokinase D (â€~glucokinase') with inosine triphosphate as phosphate donor. Loss of kinetic co-operativity with respect to glucose. Biochemical Journal, 1987, 245, 625-629.	1.7	12
115	Co-operativity in monomeric enzymes. Journal of Theoretical Biology, 1987, 124, 1-23.	0.8	83
116	The time dimension in steady-state kinetic: A simplified representation of control coefficients. Biochemical Education, 1987, 15, 144-146.	0.1	8
117	Dominance is not Inevitable. Journal of Theoretical Biology, 1987, 125, 333-338.	0.8	34
118	Co-operative and allosteric enzymes: 20 years on. FEBS Journal, 1987, 166, 255-272.	0.2	112
119	Nomenclature and symbols for folic acid and related compounds (Recommendations 1986). Pure and Applied Chemistry, 1987, 59, 833-836.	0.9	8
120	Why is uncompetitive inhibition so rare?. FEBS Letters, 1986, 203, 3-6.	1.3	146
121	Why are enzymes so small? or why do biochemists ask â€~why are enzymes so big?'. Trends in Biochemical Sciences, 1986, 11, 286.	3.7	2
122	Robust regression of enzyme kinetic data. Biochemical Journal, 1986, 234, 21-29.	1.7	36
123	Mechanistic origin of the sigmoidal rate behaviour of rat liver hexokinase D (â€~glucokinase'). Biochemical Journal, 1986, 240, 293-296.	1.7	35
124	Allosteric character of the inhibition of rat-muscle hexokinase B by glucose 6-phosphate. FEBS Journal, 1986, 161, 171-176.	0.2	13
125	The definition of â€ [~] peptidase'. Biochemical Journal, 1985, 231, 808-808.	1.7	3
126	Eukaryotic genes: Are introns structural elements or evolutionary debris?. Nature, 1985, 313, 434-435.	13.7	22

#	Article	IF	CITATIONS
127	The amino acid sequences of the copper/zinc superoxide dismutases from swordfish and Photobacter leiognathi confirm the predictions made from the compositions. FEBS Journal, 1985, 151, 333-335.	0.2	9
128	Control analysis of metabolic systems. Trends in Biochemical Sciences, 1985, 10, 16.	3.7	166
129	Nomenclature for incompletely specified bases in nucleic acid sequences: rcommendations 1984. Nucleic Acids Research, 1985, 13, 3021-3030.	6.5	448
130	Effect of glycerol on glucokinase activity: Loss of cooperative behavior with respect to glucose. Archives of Biochemistry and Biophysics, 1985, 237, 328-334.	1.4	10
131	Molecular biology: No introns in insect globin genes. Nature, 1984, 310, 724-724.	13.7	3
132	Enzyme specificity: Its meaning in the general case. Journal of Theoretical Biology, 1984, 108, 451-457.	0.8	27
133	Solvent isotope effects on the glucokinase reaction. Negative co-operativity and a large inverse isotope effect in 2H2O. FEBS Journal, 1984, 141, 157-163.	0.2	14
134	Enzyme kinetics calculations - The direct linear plot procedure. Journal of Chemical Education, 1984, 61, 527.	1.1	3
135	The prediction of repetitive protein sequences from amino acid compositions: a comment. Biochemical Journal, 1984, 217, 340-340.	1.7	1
136	Rat-Liver Glucokinase as a Mnemonical Enzyme. , 1984, , 29-41.		3
137	Revision of Enzyme Nomenclature. Listing Enzymes. FEBS Journal, 1983, 133, 479-479.	0.2	1
138	Isotope-Exchange Evidence that Glucose 6-Phosphate Inhibits Rat-Muscle Hexokinase II at an Allosteric Site. FEBS Journal, 1983, 134, 283-288.	0.2	34
139	Listing enzymes. Biochemical Education, 1983, 11, 119.	0.1	0
140	Phenetic methods of classification use information that is disregarded by minimum-length methods. Journal of Theoretical Biology, 1983, 101, 317-319.	0.8	7
141	The amino acid compositions of proteins are correlated with their molecular sizes. Biochemical Journal, 1983, 213, 271-274.	1.7	19
142	Terminology for sialic acids. Biochemical Journal, 1983, 215, 711-711.	1.7	1
143	Metabolic efficiency: Is it a useful concept?. Biochemical Society Transactions, 1983, 11, 44-45.	1.6	14
144	[9] Relating proteins by amino acid composition. Methods in Enzymology, 1983, 91, 60-75.	0.4	151

#	Article	IF	CITATIONS
145	The stereochemical course of phosphoryl transfer catalysed by glucokinase Biochemical Journal, 1982, 201, 421-423.	1.7	18
146	The steady state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K12. The reduction of single-electron acceptors. Biochemical Journal, 1982, 203, 505-510.	1.7	9
147	Electron-spin-resonance studies of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochemical Journal, 1982, 207, 333-339.	1.7	14
148	Unusual solvent isotope effects on the glucokinase reaction. Biochemical Society Transactions, 1982, 10, 451-452.	1.6	2
149	Mechanism of liver glucokinase. Molecular and Cellular Biochemistry, 1982, 44, 71-80.	1.4	32
150	Related genes can have unrelated introns. Nature, 1982, 297, 625-626.	13.7	10
151	lsotope-exchange evidence for an ordered mechanism for rat-liver glucokinase, a monomeric cooperative enzyme. Biochemistry, 1981, 20, 499-506.	1.2	47
152	Robust Estimation in Enzyme Kinetics. , 1981, , 105-119.		8
153	Interpretation of amino acid compositions. Trends in Biochemical Sciences, 1981, 6, 217-219.	3.7	22
154	Measurement of flux ratios as a probe of enzyme mechanisms. Trends in Biochemical Sciences, 1981, 6, 149-150.	3.7	6
155	Prosthetic groups of the NADH-dependent nitrite reductase from <i>Escherichia coli</i> K12. Biochemical Journal, 1981, 193, 861-867.	1.7	71
156	Fitting of enzyme kinetic data without prior knowledge of weights. Biochemical Journal, 1981, 193, 1005-1008.	1.7	66
157	The steady-state kinetics of the NADH-dependent nitrite reductase from <i>Escherichia coli</i> K 12. Nitrite and hydroxylamine reduction. Biochemical Journal, 1981, 199, 171-178.	1.7	21
158	Isotope-exchange evidence for allosteric regulation of hexokinase II by glucose 6-phosphate and for an obligatory addition of substrates. Biochemical Society Transactions, 1981, 9, 62-63.	1.6	6
159	MECHANISTIC STUDIES OF RAT MUSCLE HEXOKINASE II. Biochemical Society Transactions, 1981, 9, 158P-158P.	1.6	1
160	ROBUST ESTIMATION OF ENZYME KINETIC PARAMETERS. Biochemical Society Transactions, 1981, 9, 321P-321P.	1.6	0
161	Validity of the jack-knife technique for analysing enzyme kinetic data. Biochemical Journal, 1980, 185, 535-536.	1.7	4
162	The random character of protein evolution and its effects on the reliability of phylogenetic information deduced from amino acid sequences and compositions. Biochemical Journal, 1980, 191, 349-354.	1.7	20

#	Article	IF	CITATIONS
163	Critical values for testing the significance of amino acid composition indexes. Analytical Biochemistry, 1980, 105, 233-238.	1.1	71
164	Affinity Labelling of Rat-Muscle Hexokinase Type II by a Glucose-Derived Alkylating Agent. FEBS Journal, 1979, 93, 375-385.	0.2	26
165	APPENDIX. Validity of a 'Steady-State' Treatment of Inactivation Kinetics. FEBS Journal, 1979, 93, 383-385.	0.2	24
166	How reliably do amino acid composition comparisons predict sequence similarities between proteins?. Journal of Theoretical Biology, 1979, 76, 369-386.	0.8	69
167	THE DETERMINATION OF BARLEY α-AMYLASE ACTIVITY. Journal of the Institute of Brewing, 1979, 85, 157-159.	0.8	10
168	Interpretation of the difference index as a guide to protein sequence identity. Journal of Theoretical Biology, 1978, 74, 155-161.	0.8	16
169	Evaluation of distribution-free confidence limits for enzyme kinetic parameters. Journal of Theoretical Biology, 1978, 74, 163-175.	0.8	82
170	Further corrections to "An introduction to programming the winograd Fourier transform algorithm (WFTA)". IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26, 482-482.	2.0	2
171	Estimation of Michaelis constant and maximum velocity from the direct linear plot. Biochimica Et Biophysica Acta - Biomembranes, 1978, 523, 268-272.	1.4	176
172	Amino Acid Compositions Provide a Reliable Guide to Sequence Similarities. Biochemical Society Transactions, 1978, 6, 767-768.	1.6	1
173	Purification and properties of nitrite reductase from <i>Escherichia coli</i> K12. Biochemical Journal, 1978, 175, 483-493.	1.7	88
174	Activation of nitrite reductase from <i>Escherichia coli</i> K12 by oxidized nicotinamide-adenine dinucleotide. Biochemical Journal, 1978, 175, 495-499.	1.7	23
175	Evaluation of rate constants for enzyme-catalysed reactions by the jackknife technique. Application to liver alcohol dehydrogenase. Biochemical Journal, 1978, 175, 969-976.	1.7	38
176	An automatic method for deriving steady-state rate equations. Biochemical Journal, 1977, 165, 55-59.	1.7	77
177	Kinetic evidence for a â€~mnemonical' mechanism for rat liver glucokinase. Biochemical Journal, 1977, 165, 61-69.	1.7	131
178	Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5′-diphosphate and magnesium-adenosine 5′-triphosphate. Biochemical Journal, 1977, 165, 255-262.	1.7	39
179	Assessment of protein sequence identity from amino acid composition data. Journal of Theoretical Biology, 1977, 65, 735-742.	0.8	82
180	Evaluation of the non-randomness of protein compositions. Journal of Molecular Evolution, 1977, 10, 231-240.	0.8	13

#	Article	IF	CITATIONS
181	The effect of natural selection on enzymic catalysis. Journal of Molecular Biology, 1976, 101, 1-9.	2.0	95
182	The analysis of kinetic data in biochemistry. A critical evaluation of methods. FEBS Letters, 1976, 63, 225-230.	1.3	40
183	Kinetics of rat liver glucokinase. Co-operative interactions with glucose at physiologically significant concentrations. Biochemical Journal, 1976, 159, 7-14.	1.7	138
184	The purification in high yield and characterization of rat hepatic glucokinase. Biochemical Journal, 1976, 153, 363-373.	1.7	93
185	Estimation of the dissociation constants of enzyme-substrate complexes from steady-state measurements. Interpretation of pH-independence of <i>K</i> m. Biochemical Journal, 1976, 153, 455-461.	1.7	40
186	The pre-eminence of kcat. in the manifestation of optimal enzymic activity delineated by using the Briggs-Haldane two-step irreversible kinetic model. Biochemical Journal, 1976, 159, 165-166.	1.7	23
187	Algebraic methods for deriving steady-state rate equations. Practical difficulties with mechanisms that contain repeated rate constants. Biochemical Journal, 1976, 159, 167-167.	1.7	4
188	The use of the direct linear plot for determining initial velocities. Biochemical Journal, 1975, 149, 305-312.	3.2	122
189	Role of apurinic sites in the resistance of methylated oligodeoxyribonucleotides to degradation by spleen exonuclease. Biochemical Journal, 1975, 151, 249-256.	1.7	9
190	The nature of experimental error in enzyme kinetic measurments. Biochemical Journal, 1975, 151, 361-367.	1.7	84
191	The physiological significance of negative co-operativity. Journal of Theoretical Biology, 1975, 51, 233-235.	0.8	14
192	Diagnostic uses of the Hill (logit and Nernst) plots. Journal of Molecular Biology, 1975, 95, 201-212.	2.0	198
193	The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochemical Journal, 1974, 139, 715-720.	1.7	1,526
194	A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication). Biochemical Journal, 1974, 137, 143-144.	1.7	866
195	Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochemical Journal, 1974, 139, 721-730.	1.7	370
196	The kinetics of coupled enzyme reactions. Applications to the assay of glucokinase, with glucose 6-phosphate dehydrogenase as coupling enzyme. Biochemical Journal, 1974, 141, 205-209.	1.7	147
197	Kinetics of the hydrolysis of N-benzoyl-I-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses. Biochemical Journal, 1974, 141, 365-381	1.7	41
198	Analysis of progress curves in enzyme kinetics. Biochemical Journal, 1972, 130, 637-639.	3.2	15

#	Article	IF	CITATIONS
199	General method for the quantitative determination of saturation curves for multisubunit proteins. Biochemistry, 1970, 9, 3325-3336.	1.2	71
200	The Influence of Binding Domains on the Nature of Subunit Interactions in Oligomeric Proteins. Journal of Biological Chemistry, 1970, 245, 6241-6250.	1.6	51
201	The pH-dependence of pepsin-catalysed reactions. Biochemical Journal, 1969, 113, 353-362.	3.2	83
202	The rate-determining step in pepsin-catalysed reactions, and evidence against an acyl-enzyme intermediate. Biochemical Journal, 1969, 113, 369-375.	3.2	21
203	Biochemical Evolution. , 0, , .		6