
Hongxia Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993781/publications.pdf Version: 2024-02-01

Ησησχιλίω

#	Article	IF	CITATIONS
1	Hierarchical porous aero-cryogels for wind energy enhanced solar vapor generation. Cellulose, 2022, 29, 953-966.	4.9	8
2	Multifunction Hybrid Aerogel Capable of Reducing Silver Ions during Solar-Driven Interfacial Evaporation. ACS Sustainable Chemistry and Engineering, 2022, 10, 7463-7472.	6.7	11
3	Cellulose nanofibrils-based hybrid foam generated from Pickering emulsion toward high-performance microwave absorption. Carbohydrate Polymers, 2021, 255, 117333.	10.2	33
4	Simple Hierarchical Interface Design Strategy for Accelerating Solar Evaporation. Macromolecular Materials and Engineering, 2021, 306, 2000640.	3.6	18
5	Fabrication of Cellulose Nanofiber/Reduced Graphene Oxide/Nitrile Rubber Flexible Films Using Pickering Emulsion Technology for Electromagnetic Interference Shielding and Piezoresistive Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100070.	3.6	21
6	Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor. Ceramics International, 2021, 47, 23433-23443.	4.8	21
7	Broadband microwave-absorbing and energy-storing composite foam with pomegranate-like microstructure created from Pickering emulsion method. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106551.	7.6	7
8	Multifunctional carbon foam with hollow microspheres and a concave–convex microstructure for adjustable electromagnetic wave absorption and wearable applications. Journal of Materials Chemistry A, 2021, 9, 25982-25998.	10.3	19
9	Novel Nanocellulose/Polymer Composite Aerogel as Solidâ€State Fluorescence Probe by Pickering Emulsion Route. Macromolecular Materials and Engineering, 2020, 305, 2000467.	3.6	12
10	Robust cellulose nanofibrils reinforced poly(methyl methacrylate)/polystyrene binary blend composites with pebbleâ€shaped structure using Pickering emulsion gel. Polymers for Advanced Technologies, 2020, 31, 2676-2686.	3.2	4
11	Cellulose Nanofibril-Stabilized Pickering Emulsion and In Situ Polymerization Lead to Hybrid Aerogel for High-Efficiency Solar Steam Generation. ACS Applied Polymer Materials, 2020, 2, 4581-4591.	4.4	53
12	Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils. Carbohydrate Polymers, 2019, 224, 115202.	10.2	32
13	PMMA@SCNC composite microspheres prepared from pickering emulsion template as curcumin delivery carriers. Journal of Applied Polymer Science, 2018, 135, 46127.	2.6	22
14	Thermal and frictional properties of mesoporous silica SBAâ€15/phenolic resin nanocomposites. Polymer Composites, 2017, 38, E351.	4.6	12
15	Mechanical properties of phenol/formaldehyde resin composites reinforced by cellulose microcrystal with different aspect ratio extracted from sisal fiber. Polymers for Advanced Technologies, 2017, 28, 1013-1019.	3.2	9
16	Facile fabrication and property of biocompatible and biodegradable cellulose-coated PMMA composite microspheres by Pickering emulsion system. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 773-780.	3.4	11
17	Facile fabrication of versatile PMMA/CNF–NaYF4:Yb/Er composite microspheres by Pickering emulsion system. Materials Letters, 2016, 166, 55-58.	2.6	17
18	Study of Pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid and Polymer Science, 2015, 293, 963-974.	2.1	27

Hongxia Liu

#	Article	IF	CITATIONS
19	Facile Preparation of Core-Shell Nanocomposite Microgels. Journal of Macromolecular Science - Physics, 2014, 53, 52-66.	1.0	1
20	Fabrication and Thermal Property of Polyhedral Oligomeric Silsesquioxane (POSS)/Microcrystalline Cellulose (MCC) Hybrids. Journal of Carbohydrate Chemistry, 2014, 33, 86-103.	1.1	8
21	Facile fabrication of novel polyhedral oligomeric silsesquioxane/carboxymethyl cellulose hybrid hydrogel based on supermolecular interactions. Materials Letters, 2013, 90, 142-144.	2.6	20
22	Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomaterialia, 2010, 6, 275-281.	8.3	100
23	Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion. Polymer Chemistry, 2010, 1, 75-77.	3.9	42
24	One-pot fabrication of magnetic nanocomposite microcapsules. Materials Letters, 2009, 63, 884-886.	2.6	33
25	Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells. International Journal of Pharmaceutics, 2009, 376, 92-98.	5.2	49
26	Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer, 2009, 50, 2587-2594.	3.8	91
27	Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydrate Polymers, 2008, 71, 476-480.	10.2	101
28	Fabrication of novel core-shell hybrid alginate hydrogel beads. International Journal of Pharmaceutics, 2008, 351, 104-112.	5.2	83
29	Facile Fabrication of Hybrid Colloidosomes with Alginate Gel Cores and Shells of Porous CaCO3 Microparticles, ChemPhysChem, 2007, 8, 1157-1160	2.1	39