
Raymund J Wellinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/799372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription of ncRNAs promotes repair of UV induced DNA lesions in Saccharomyces cerevisiae subtelomeres. PLoS Genetics, 2022, 18, e1010167.	3.5	2
2	Telomere Replication: Solving Multiple End Replication Problems. Frontiers in Cell and Developmental Biology, 2021, 9, 668171.	3.7	52
3	Exploring the Alternative Splicing of Long Noncoding RNAs. Trends in Genetics, 2021, 37, 695-698.	6.7	33
4	Maturation and shuttling of the yeast telomerase RNP: assembling something new using recycled parts. Current Genetics, 2021, , 1.	1.7	2
5	Telomerase in Space and Time: Regulation of Yeast Telomerase Function at Telomeres and DNA Breaks. , 2020, , .		1
6	Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genetics, 2020, 16, e1008733.	3.5	12
7	In vivo chromatin organization on native yeast telomeric regions is independent of a cis-telomere loopback conformation. Epigenetics and Chromatin, 2020, 13, 23.	3.9	12
8	Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex. ELife, 2020, 9, .	6.0	10
9	Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. , 2020, 16, e1008733.		0
10	Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. , 2020, 16, e1008733.		0
11	Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. , 2020, 16, e1008733.		0
12	Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. , 2020, 16, e1008733.		0
13	Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Current Genetics, 2019, 65, 109-118.	1.7	21
14	Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Scientific Reports, 2019, 9, 13365.	3.3	27
15	SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Science Advances, 2019, 5, eaav3673.	10.3	70
16	Nuclear import of Cdc13 limits chromosomal capping. Nucleic Acids Research, 2018, 46, 2975-2989.	14.5	8
17	The yeast telomerase module for telomere recruitment requires a specific RNA architecture. Rna, 2018, 24, 1067-1079.	3.5	15
18	Life and Death of Yeast Telomerase RNA. Journal of Molecular Biology, 2017, 429, 3242-3254.	4.2	22

RAYMUND J WELLINGER

#	Article	IF	CITATIONS
19	Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu–Sir4 interaction. Nucleic Acids Research, 2017, 45, 4577-4589.	14.5	10
20	Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP. Cell, 2016, 165, 1171-1181.	28.9	79
21	Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends. PLoS Genetics, 2016, 12, e1006479.	3.5	14
22	Turning Telomerase into a Jekyll and Hyde Case?. Cancer Discovery, 2015, 5, 19-21.	9.4	1
23	LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood, 2015, 125, 2101-2110.	1.4	42
24	A Single Templating RNA in Yeast Telomerase. Cell Reports, 2015, 12, 441-448.	6.4	25
25	A Function for the hnRNP A1/A2 Proteins in Transcription Elongation. PLoS ONE, 2015, 10, e0126654.	2.5	36
26	DNA damage checkpoint adaptation genes are required for division of cells harbouring eroded telomeres. Microbial Cell, 2015, 2, 394-405.	3.2	9
27	In the End, What's the Problem?. Molecular Cell, 2014, 53, 855-856.	9.7	39
28	A new telomerase RNA element that is critical for telomere elongation. Nucleic Acids Research, 2013, 41, 7713-7724.	14.5	13
29	The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks. Cell Reports, 2013, 3, 2033-2045.	6.4	43
30	Cell cycle–dependent transcription factors control the expression of yeast telomerase RNA. Rna, 2013, 19, 992-1002.	3.5	6
31	Telomerase caught in the act. RNA Biology, 2012, 9, 1139-1143.	3.1	4
32	Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway. Nucleic Acids Research, 2012, 40, 5625-5636.	14.5	43
33	Exposing Secrets of Telomere-Telomerase Encounters. Cell, 2012, 150, 453-454.	28.9	10
34	Everything You Ever Wanted to Know About <i>Saccharomyces cerevisiae</i> Telomeres: Beginning to End. Genetics, 2012, 191, 1073-1105.	2.9	284
35	Telomeres and telomerase dance to the rhythm of the cell cycle. Trends in Biochemical Sciences, 2012, 37, 391-399.	7.5	44
36	UV-Induced DNA Damage and DNA Repair in Ribosomal Genes Chromatin. Methods in Molecular Biology, 2012, 809, 303-320.	0.9	8

RAYMUND J WELLINGER

#	Article	IF	CITATIONS
37	Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes. Cell, 2011, 147, 320-331.	28.9	122
38	Live Cell Imaging of Telomerase RNA Dynamics Reveals Cell Cycle-Dependent Clustering of Telomerase at Elongating Telomeres. Molecular Cell, 2011, 44, 819-827.	9.7	103
39	Genome-Wide Mapping of DNA Strand Breaks. PLoS ONE, 2011, 6, e17353.	2.5	29
40	Alternative splicing of SYK regulates mitosis and cell survival. Nature Structural and Molecular Biology, 2011, 18, 673-679.	8.2	99
41	Abrupt telomere losses and reduced end-resection can explain accelerated senescence of Smc5/6 mutants lacking telomerase. DNA Repair, 2011, 10, 271-282.	2.8	23
42	Telomerase Is Required to Protect Chromosomes with Vertebrate-type T2AG3 3′ Ends in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 27132-27138.	3.4	15
43	The Smc5/6 complex and the difficulties cutting the ties of twin sisters. Aging, 2011, 3, 186-188.	3.1	2
44	When the caps fall off: Responses to telomere uncapping in yeast. FEBS Letters, 2010, 584, 3734-3740.	2.8	17
45	Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO Journal, 2010, 29, 3007-3019.	7.8	69
46	Methylated H3K4, a Transcription-Associated Histone Modification, Is Involved in the DNA Damage Response Pathway. PLoS Genetics, 2010, 6, e1001082.	3.5	133
47	Differential participation of homologous recombination and nucleotide excision repair in yeast survival to ultraviolet light radiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 698, 52-59.	1.7	6
48	Identification and comparative analysis of telomerase RNAs from <i>Candida</i> species reveal conservation of functional elements. Rna, 2009, 15, 546-559.	3.5	91
49	The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed–Sternberg cells. Leukemia, 2009, 23, 565-573.	7.2	70
50	The CST Complex and Telomere Maintenance: The Exception Becomes the Rule. Molecular Cell, 2009, 36, 168-169.	9.7	36
51	TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO Journal, 2008, 27, 748-757.	7.8	95
52	Identification of Alternative Splicing Markers for Breast Cancer. Cancer Research, 2008, 68, 9525-9531.	0.9	171
53	Multiple Alternative Splicing Markers for Ovarian Cancer. Cancer Research, 2008, 68, 657-663.	0.9	147
54	Deletion of Many Yeast Introns Reveals a Minority of Genes that Require Splicing for Function. Molecular Biology of the Cell, 2008, 19, 1932-1941.	2.1	99

RAYMUND J WELLINGER

#	Article	IF	CITATIONS
55	RNase III-dependent Regulation of Yeast Telomerase*. Journal of Biological Chemistry, 2007, 282, 4373-4381.	3.4	32
56	The Cell Division Cycle Puts Up with Unprotected Telomeres: Cell Cycle Regulated Telomere Uncapping as a Means to Achieve Telomere Homeostasis. Cell Cycle, 2007, 6, 1161-1167.	2.6	22
57	Assessing Telomeric Phenotypes. , 2006, 313, 265-316.		7
58	Mammalian Rad9 Plays a Role in Telomere Stability, S- and G ₂ -Phase-Specific Cell Survival, and Homologous Recombinational Repair. Molecular and Cellular Biology, 2006, 26, 1850-1864.	2.3	126
59	DNA Degradation at Unprotected Telomeres in Yeast Is Regulated by the CDK1 (Cdc28/Clb) Cell-Cycle Kinase. Molecular Cell, 2006, 24, 127-137.	9.7	117
60	A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 606, 92-105.	1.7	41
61	Telomerase- and capping-independent yeast survivors with alternate telomere states. Nature Cell Biology, 2006, 8, 741-747.	10.3	65
62	Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO Journal, 2006, 25, 846-856.	7.8	55
63	A mutation in yeast Tel1p that causes differential effects on the DNA damage checkpoint and telomere maintenance. Current Genetics, 2005, 48, 310-322.	1.7	8
64	Telomeres: what's new at your end?. Journal of Cell Science, 2005, 118, 2785-2788.	2.0	29
65	Limited TTP supply affects telomere length regulation in a telomerase-independent fashion. Nucleic Acids Research, 2005, 33, 704-713.	14.5	11
66	Free uptake of cell-penetrating peptides by fission yeast. FEBS Letters, 2005, 579, 4873-4878.	2.8	25
67	Humanized telomeres and an attempt to express a functional human telomerase in yeast. Nucleic Acids Research, 2004, 32, 1917-1927.	14.5	22
68	The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes and Development, 2004, 18, 1391-1396.	5.9	212
69	A Phylogenetically Based Secondary Structure for the Yeast Telomerase RNA. Current Biology, 2004, 14, 1148-1158.	3.9	129
70	Targeting heterogeneous nuclear ribonucleoparticule A1 and A2 proteins by RNA interference promotes cell death in transformed but not in normal mouse cell lines. Molecular Cancer Therapeutics, 2004, 3, 1193-9.	4.1	12
71	Telomere maintenance and DNA replication: how closely are these two connected?. Trends in Genetics, 2003, 19, 439-446.	6.7	79

A New Link for a Linker Histone. Molecular Cell, 2003, 11, 1421-1423.

9.7 2

#	Article	IF	CITATIONS
73	Human Heterochromatin Protein 1 Isoforms HP1 ^{Hsα} and HP1 ^{Hsβ} Interfere with hTERT-Telomere Interactions and Correlate with Changes in Cell Growth and Response to Ionizing Radiation. Molecular and Cellular Biology, 2003, 23, 8363-8376.	2.3	95
74	Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Research, 2003, 63, 7679-88.	0.9	127
75	Maintenance of Double-Stranded Telomeric Repeats as the Critical Determinant for Cell Viability in Yeast Cells Lacking Ku. Molecular and Cellular Biology, 2002, 22, 2182-2193.	2.3	44
76	Differential Processing of Leading- and Lagging-Strand Ends at <i>Saccharomyces cerevisiae</i> Telomeres Revealed by the Absence of Rad27p Nuclease. Genetics, 2002, 162, 1583-1594.	2.9	41
77	Inactivation of 14-3-3ï, Influences Telomere Behavior and Ionizing Radiation-Induced Chromosomal Instability. Molecular and Cellular Biology, 2000, 20, 7764-7772.	2.3	68
78	A Short C-terminal Domain of Yku70p Is Essential for Telomere Maintenance. Journal of Biological Chemistry, 2000, 275, 24921-24927.	3.4	25
79	The Function of DNA Polymerase α at Telomeric G Tails Is Important for Telomere Homeostasis. Molecular and Cellular Biology, 2000, 20, 786-796.	2.3	106
80	Identification of Ribonucleoprotein (RNP)-Specific Protein Interactions Using a Yeast RNP Interaction Trap Assay (RITA). BioTechniques, 1999, 27, 790-796.	1.8	8
81	Accumulation of Single-Stranded DNA and Destabilization of Telomeric Repeats in Yeast Mutant Strains Carrying a Deletion of <i>RAD27</i> . Molecular and Cellular Biology, 1999, 19, 4143-4152.	2.3	123
82	Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nature Genetics, 1998, 19, 199-202.	21.4	267
83	Yeast Ku as a Regulator of Chromosomal DNA End Structure. Science, 1998, 280, 741-744.	12.6	402
84	Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Research, 1998, 26, 5365-5371.	14.5	80
85	The terminal DNA structure of mammalian chromosomes. EMBO Journal, 1997, 16, 3705-3714.	7.8	308
86	Evidence for a New Step in Telomere Maintenance. Cell, 1996, 85, 423-433.	28.9	289
87	Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13902-13907.	7.1	190
88	Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell, 1993, 72, 51-60.	28.9	392
89	The acquisition and association of TG1–3 single-strand tails during replication of Saccharomyces telomeres. , 1993, , 133-141.		1
90	Structural and Temporal Analysis of Telomere Replication in Yeast. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 725-732.	1.1	13

#	Article	IF	CITATIONS
91	Use of non-denaturing Southern hybridization and two dimensional agarose gels to detect putative intermediates in telomere replication inSaccharomyces cerevisiae. Chromosoma, 1992, 102, S150-S156.	2.2	17
92	Lack of positional requirements for autonomously replicating sequence elements on artificial yeast chromosomes Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 973-977.	7.1	44
93	The effect of age on the induction of tyrosine aminotransferase and tryptophan oxygenase genes by physiological stress. Mechanisms of Ageing and Development, 1986, 34, 203-217.	4.6	14