Fabrice Piazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993672/publications.pdf Version: 2024-02-01

FARDICE DIAZZA

#	Article	IF	CITATIONS
1	Progress on Diamane and Diamanoid Thin Film Pressureless Synthesis. Journal of Carbon Research, 2021, 7, 9.	1.4	11
2	Ultra-Thin Carbon Films: The Rise of sp3-C-Based 2D Materials?. Journal of Carbon Research, 2021, 7, 30.	1.4	2
3	Combining low and high electron energy diffractions as a powerful tool for studying 2D materials. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	1
4	Unveiling the existence and role of a liquid phase in a high temperature (1400 °C) pyrolytic carbon deposition process. Carbon Trends, 2021, 5, 100117.	1.4	5
5	Towards a better understanding of the structure of diamanoÃ ⁻ ds and diamanoÃ ⁻ d/graphene hybrids. Carbon, 2020, 156, 234-241.	5.4	40
6	Raman evidence for the successful synthesis of diamane. Carbon, 2020, 169, 129-133.	5.4	49
7	Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films. Carbon, 2019, 145, 10-22.	5.4	64
8	Carbon nanotubes coated with diamond nanocrystals and silicon carbide by hot-filament chemical vapor deposition below 200 °C substrate temperature. Carbon, 2014, 75, 113-123.	5.4	10
9	High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures. Journal of Nanomaterials, 2009, 2009, 1-6.	1.5	7
10	Wettability of hydrogenated tetrahedral amorphous carbon. Diamond and Related Materials, 2009, 18, 43-50.	1.8	31
11	Synthesis of diamond nanocrystals on polyimide film. Diamond and Related Materials, 2009, 18, 113-116.	1.8	10
12	Synthesis of diamond at sub 300°C substrate temperature. Diamond and Related Materials, 2007, 16, 1950-1957.	1.8	31
13	Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth. Journal of Applied Physics, 2007, 102, 013301.	1.1	5
14	Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films, 2007, 515, 7906-7910.	0.8	7
15	Diamond film synthesis at low temperature. Diamond and Related Materials, 2006, 15, 109-116.	1.8	23
16	Synthesis of polycrystalline diamond at low temperature on temperature sensitive materials of industrial interest. International Journal of Refractory Metals and Hard Materials, 2006, 24, 24-31.	1.7	6
17	Hard-hydrogenated tetrahedral amorphous carbon films by distributed electron cyclotron resonance plasma. International Journal of Refractory Metals and Hard Materials, 2006, 24, 39-48.	1.7	14
18	Effects of a nanocomposite carbon buffer layer on the field emission properties of multiwall carbon nanotubes and nanofibers grown by hot filament chemical vapor deposition. Journal of Vacuum Science & Technology B, 2006, 24, 639.	1.3	14

FABRICE PIAZZA

#	Article	IF	CITATIONS
19	Protective diamond-like carbon coatings for future optical storage disks. Diamond and Related Materials, 2005, 14, 994-999.	1.8	93
20	Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diamond and Related Materials, 2005, 14, 1098-1102.	1.8	353
21	Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005. 23. 645.	1.6	17
22	Formation of boron carbonitride nanotubes from in situ grown carbon nanotubes. Diamond and Related Materials, 2005, 14, 965-969.	1.8	23
23	Large area deposition of hydrogenated amorphous carbon films for optical storage disks. Diamond and Related Materials, 2004, 13, 1505-1510.	1.8	16
24	Flyable media for slider based ultra-high density optical recording. IET Science, Measurement and Technology, 2003, 150, 203-206.	0.7	7
25	Impact of energy density and stress fields on the nucleation dynamics of plasma deposited a-C:H films. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 731-735.	0.6	3
26	Transpolyacetylene chains in DECR plasma deposited a-C:H films. Diamond and Related Materials, 2003, 12, 942-945.	1.8	13
27	Hypersonic shock waves and hybridization ofa-C:H thin films. Journal of Applied Physics, 2003, 93, 5911-5919.	1.1	4
28	Transpolyacetylene chains in hydrogenated amorphous carbon films free of nanocrystalline diamond. Applied Physics Letters, 2003, 82, 358-360.	1.5	56
29	Stress field effects on the microstructure and properties ofa-C:H thin films. Journal of Applied Physics, 2002, 92, 3662-3670.	1.1	18
30	Incorporation of Hydrogen and Oxygen into (t)a-C:H Thin Films Deposited using DECR plasma ([*]). Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	5
31	Influence of the process parameters on the properties of hydrogenated amorphous carbon thin films deposited using ECR plasma. Thin Solid Films, 2001, 383, 196-199.	0.8	7