
Annika Jögi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7021-7026.	3.3	349
2	Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Research, 2003, 63, 1441-4.	0.4	156
3	Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Upsala Journal of Medical Sciences, 2012, 117, 217-224.	0.4	148
4	Induction of ID2 Expression by Hypoxia-inducible Factor-1. Journal of Biological Chemistry, 2004, 279, 39223-39231.	1.6	120
5	Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Experimental Cell Research, 2004, 295, 469-487.	1.2	114
6	Modulation of Basic Helix-Loop-Helix Transcription Complex Formation by Id Proteins during Neuronal Differentiation. Journal of Biological Chemistry, 2002, 277, 9118-9126.	1.6	82
7	HIF-2α expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Experimental Cell Research, 2005, 303, 447-456.	1.2	69
8	Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Modern Pathology, 2009, 22, 1564-1574.	2.9	69
9	HASH-1 and E2-2 Are Expressed in Human Neuroblastoma Cells and Form a Functional Complex. Biochemical and Biophysical Research Communications, 2000, 274, 22-31.	1.0	59
10	Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS ONE, 2019, 14, e0226150.	1.1	52
11	Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. International Journal of Cancer, 2005, 116, 218-225.	2.3	48
12	Hypoxia-induced dedifferentiation in neuroblastoma cells. Cancer Letters, 2003, 197, 145-150.	3.2	43
13	Hypoxia, pseudohypoxia and cellular differentiation. Experimental Cell Research, 2017, 356, 192-196.	1.2	41
14	Hypoxic Conditions Induce a Cancer-Like Phenotype in Human Breast Epithelial Cells. PLoS ONE, 2012, 7, e46543.	1.1	38
15	Antibody-mediated Targeting of the Urokinase-type Plasminogen Activator Proteolytic Function Neutralizes Fibrinolysis in Vivo. Journal of Biological Chemistry, 2008, 283, 32506-32515.	1.6	34
16	Neutralisation of uPA with a Monoclonal Antibody Reduces Plasmin Formation and Delays Skin Wound Healing in tPA-Deficient Mice. PLoS ONE, 2010, 5, e12746.	1.1	25
17	Breast cancer hypoxia in relation to prognosis and benefit from radiotherapy after breast-conserving surgery in a large, randomised trial with long-term follow-up. British Journal of Cancer, 2022, 126, 1145-1156.	2.9	20
18	HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget, 2016, 7, 11238-11250.	0.8	16

Annika Jögi

#	Article	IF	CITATIONS
19	EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation. Biochemical and Biophysical Research Communications, 2014, 445, 163-169.	1.0	14
20	Differential HIF-11± and HIF-21± Expression in Mammary Epithelial Cells during Fat Pad Invasion, Lactation, and Involution. PLoS ONE, 2015, 10, e0125771.	1.1	14
21	Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo. Thrombosis and Haemostasis, 2007, 97, 1013-22.	1.8	13
22	Protein kinase Cα suppresses the expression of STC1 in MDA-MB-231 breast cancer cells. Tumor Biology, 2011, 32, 1023-1030.	0.8	7
23	Spontaneous lung and lymph node metastasis in transgenic breast cancer is independent of the urokinase receptor uPAR. Clinical and Experimental Metastasis, 2015, 32, 543-554.	1.7	5
24	Tumour Hypoxia and the Hypoxia-Inducible Transcription Factors: Key Players in Cancer Progression and Metastasis. , 2015, , 65-98.		4
25	24Specific targeting of uPA activity with a monoclonal antibody neutralizeS uPA-dependent effects <i>in vivo</i> . Apmis, 2008, 116, 428-428.	0.9	Ο
26	Neuroblastoma: Role of Hypoxia and Hypoxia Inducible Factors in Tumor Progression. Pediatric Cancer, 2012, , 137-149.	0.0	0