Ana Cortés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993327/publications.pdf

Version: 2024-02-01

516561 552653 81 925 16 26 citations h-index g-index papers 86 86 86 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluating WRF-BEP/BEM Performance: On the Way to Analyze Urban Air Quality at High Resolution Using WRF-Chem+BEP/BEM. Lecture Notes in Computer Science, 2021, , 516-527.	1.0	1
2	Cloud-Based Urgent Computing for Forest Fire Spread Prediction under Data Uncertainties., 2021,,.		1
3	Wind Field Parallelization Based on Python Multiprocessing to Reduce Forest Fire Propagation Prediction Uncertainty. Lecture Notes in Computer Science, 2020, , 550-560.	1.0	O
4	Early Adaptive Evaluation Scheme for Data-Driven Calibration in Forest Fire Spread Prediction. Lecture Notes in Computer Science, 2020, , 17-30.	1.0	2
5	Finding, analysing and solving MPI communication bottlenecks in Earth System models. Journal of Computational Science, 2019, 36, 100864.	1.5	14
6	How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6. Geoscientific Model Development, 2019, 12, 3135-3148.	1.3	24
7	A global wildfire dataset for the analysis of fire regimes and fire behaviour. Scientific Data, 2019, 6, 296.	2.4	119
8	Scalability of a multi-physics system for forest fire spread prediction in multi-core platforms. Journal of Supercomputing, 2019, 75, 1163-1174.	2.4	5
9	Wind field parallelization based on Schwarz alternating domain decomposition method. Future Generation Computer Systems, 2018, 82, 565-574.	4.9	3
10	Relevance of Error Function in Input Parameter Calibration in a Coupled Wind Field Model-Forest Fire Spread Simulator. , $2018, , .$		O
11	Reducing Data Uncertainty in Forest Fire Spread Prediction: A Matter of Error Function Assessment. Lecture Notes in Computer Science, 2018, , 207-220.	1.0	O
12	Time aware genetic algorithm for forest fire propagation prediction: exploiting multi ore platforms. Concurrency Computation Practice and Experience, 2017, 29, e3837.	1.4	23
13	Applying vectorization of diagonal sparse matrix to accelerate wind field calculation. Journal of Supercomputing, 2017, 73, 240-258.	2.4	5
14	Introducing computational thinking, parallel programming and performance engineering in interdisciplinary studies. Journal of Parallel and Distributed Computing, 2017, 105, 116-126.	2.7	10
15	Optimizing domain decomposition in an ocean model: the case of NEMO. Procedia Computer Science, 2017, 108, 776-785.	1.2	6
16	A comparative study of evolutionary statistical methods for uncertainty reduction in forest fire propagation prediction. Procedia Computer Science, 2017, 108, 2018-2027.	1,2	7
17	Non-supervised method for early forest fire detection and rapid mapping. , 2017, , .		3
18	Automatic fire perimeter determination using MODIS hotspots information. , 2016, , .		4

#	Article	IF	CITATIONS
19	Applying domain decomposition to wind field calculation. Parallel Computing, 2016, 57, 185-196.	1.3	6
20	Error Function Impact in Dynamic Data-driven Framework Applied to Forest Fire Spread Prediction. Procedia Computer Science, 2016, 80, 418-427.	1.2	4
21	Accelerating preconditioned conjugate gradient solver in wind field calculation. , 2016, , .		2
22	Large Forest Fire Spread Prediction: Data and Computational Science. Procedia Computer Science, 2016, 80, 909-918.	1.2	6
23	Three evolutionary statistical parallel methods for uncertainty reduction in wildland fire prediction. , $2016, \ldots$		3
24	Hybrid application to accelerate wind field calculation. Journal of Computational Science, 2016, 17, 576-590.	1.5	5
25	Real-time genetic spatial optimization to improve forest fire spread forecasting in high-performance computing environments. International Journal of Geographical Information Science, 2016, 30, 594-611.	2.2	9
26	Determining map partitioning to minimize wind field uncertainty in forest fire propagation prediction. Journal of Computational Science, 2016, 14, 28-37.	1.5	9
27	Adapting Map Resolution to Accomplish Execution Time Constraints in Wind Field Calculation. Procedia Computer Science, 2015, 51, 2749-2753.	1.2	2
28	Forest Fire Propagation Prediction Based on Overlapping DDDAS Forecasts. Procedia Computer Science, 2015, 51, 1623-1632.	1.2	16
29	Relieving Uncertainty in Forest Fire Spread Prediction by Exploiting Multicore Architectures. Procedia Computer Science, 2015, 51, 1752-1761.	1.2	7
30	Applying domain decomposition Schwarz method to accelerate wind field calculation., 2015,,.		3
31	Enhancing computational efficiency on forest fire forecasting by time-aware Genetic Algorithms. Journal of Supercomputing, 2015, 71, 1869-1881.	2.4	7
32	Coupled Dynamic Data-Driven Framework for Forest Fire Spread Prediction. Lecture Notes in Computer Science, 2015, , 54-67.	1.0	5
33	Enhancing multi-model forest fire spread prediction by exploiting multi-core parallelism. Journal of Supercomputing, 2014, 70, 721-732.	2.4	15
34	Case Study in Large Scale Climate Simulations: Optimizing the Speedup/Efficiency Balance in Supercomputing Environments. , 2014, , .		1
35	Response time assessment in forest fire spread simulation: An integrated methodology for efficient exploitation of available prediction time. Environmental Modelling and Software, 2014, 54, 153-164.	1.9	24
36	Determining map partitioning to accelerate wind field calculation. , 2014, , .		5

#	Article	IF	CITATIONS
37	Wind Field Uncertainty in Forest Fire Propagation Prediction. Procedia Computer Science, 2014, 29, 1535-1545.	1.2	20
38	Impact of I/O and Data Management in Ensemble Large Scale Climate Forecasting Using EC-Earth3. Procedia Computer Science, 2014, 29, 2370-2379.	1.2	2
39	Towards a Dynamic Data Driven Wildfire Behavior Prediction System at European Level. Procedia Computer Science, 2014, 29, 1216-1226.	1.2	12
40	Core Allocation Policies on Multicore Platforms to Accelerate Forest Fire Spread Predictions. Lecture Notes in Computer Science, 2014, , 151-160.	1.0	2
41	Parameter calibration framework for environmental emergency models. Simulation Modelling Practice and Theory, 2013, 31, 10-21.	2.2	11
42	Coupling Diagnostic and Prognostic Models to a Dynamic Data Driven Forest Fire Spread Prediction System. Procedia Computer Science, 2013, 18, 1851-1860.	1.2	12
43	Relieving the Effects of Uncertainty in Forest Fire Spread Prediction by Hybrid MPI-OpenMP Parallel Strategies. Procedia Computer Science, 2013, 18, 2278-2287.	1.2	23
44	A Data-driven Model for Large Wildfire Behaviour Prediction in Europe. Procedia Computer Science, 2013, 18, 1861-1870.	1.2	28
45	Spatial pattern alterations from JPEG2000 lossy compression of remote sensing images: massive variogram analysis in high performance computing. Journal of Applied Remote Sensing, 2013, 7, 073595.	0.6	5
46	Applying Probability Theory for the Quality Assessment of a Wildfire Spread Prediction Framework Based on Genetic Algorithms. Scientific World Journal, The, 2013, 2013, 1-12.	0.8	3
47	Genetic Algorithm Characterization for the Quality Assessment of Forest Fire Spread Prediction. Procedia Computer Science, 2012, 9, 312-320.	1.2	12
48	On the Way of Applying Urgent Computing Solutions to Forest Fire Propagation Prediction. Procedia Computer Science, 2012, 9, 1657-1666.	1.2	7
49	Towards Improving Numerical Weather Predictions by Evolutionary Computing Techniques. Procedia Computer Science, 2012, 9, 1056-1063.	1.2	6
50	Coupling Wind Dynamics into a DDDAS Forest Fire Propagation Prediction System. Procedia Computer Science, 2012, 9, 1110-1118.	1.2	20
51	Parallel Multi-level Genetic Ensemble for Numerical Weather Prediction Enhancement. Procedia Computer Science, 2012, 9, 276-285.	1.2	11
52	Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction. Journal of Computational Science, 2012, 3, 398-404.	1.5	47
53	Geostatistical analysis of Landsat-TM lossy compression images in a high-performance computing environment. , $2011,\ldots$		1
54	Parallel ordinary kriging interpolation incorporating automatic variogram fitting. Computers and Geosciences, 2011, 37, 464-473.	2.0	60

#	Article	IF	CITATIONS
55	Prediction Time Assessment in a DDDAS for Natural Hazard Management: Forest Fire Study Casel. Procedia Computer Science, 2011, 4, 1761-1770.	1.2	2
56	Evolutionary Optimisation Techniques to Estimate Input Parameters in Environmental Emergency Modelling. Studies in Computational Intelligence, 2011, , 125-143.	0.7	2
57	Towards policies for data insertion in dynamic data driven application systems: a case study sudden changes in wildland fire. Procedia Computer Science, 2010, 1, 1267-1276.	1.2	3
58	Knowledge-guided Genetic Algorithm for input parameter optimisation in environmental modelling. Procedia Computer Science, 2010, 1, 1367-1375.	1.2	19
59	Wildland fire growth prediction method based on Multiple Overlapping Solution. Journal of Computational Science, 2010, 1, 229-237.	1.5	35
60	Evolutionary Intelligent System for input parameter optimisation in environmental modelling: A case study in forest fire forecasting. , 2010 , , .		1
61	Data Injection at Execution Time in Grid Environments Using Dynamic Data Driven Application System for Wildland Fire Spread Prediction. , 2010, , .		5
62	Half-Duplex Dynamic Data Driven Application System for Forest Fire Spread Prediction. Lecture Notes in Computer Science, 2010, , 1-7.	1.0	0
63	Support for Urgent Computing Based on Resource Virtualization. Lecture Notes in Computer Science, 2009, , 227-236.	1.0	5
64	Injecting Dynamic Real-Time Data into a DDDAS for Forest Fire Behavior Prediction. Lecture Notes in Computer Science, 2009, , 489-499.	1.0	21
65	An Adaptive System for Forest Fire Behavior Prediction. , 2008, , .		9
66	Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction. Lecture Notes in Computer Science, 2008, , 36-45.	1.0	29
67	The Convergence of Realistic Distributed Load-Balancing Algorithms. Theory of Computing Systems, 2007, 41, 609-618.	0.7	12
68	Improving forest-fire prediction by applying a statistical approach. Forest Ecology and Management, 2006, 234, S210.	1.4	7
69	Between classical and ideal: enhancing wildland fire prediction using cluster computing. Cluster Computing, 2006, 9, 329-343.	3. 5	4
70	TDP_SHELL: An Interoperability Framework for Resource Management Systems and Run-Time Monitoring Tools. Lecture Notes in Computer Science, 2006, , 15-24.	1.0	1
71	S 2 F 2 M – Statistical System for Forest Fire Management. Lecture Notes in Computer Science, 2005, , 427-434.	1.0	5
72	Enhancing wildland fire prediction on cluster systems applying evolutionary optimization techniques. Future Generation Computer Systems, 2005, 21, 61-67.	4.9	36

Ana Cortés

#	Article	IF	CITATIONS
73	Accelerating Wildland Fire Prediction on Cluster Systems. Lecture Notes in Computer Science, 2004, , 220-227.	1.0	0
74	Accelerating Optimization of Input Parameters in Wildland Fire Simulation. Lecture Notes in Computer Science, 2004, , 1067-1074.	1.0	3
75	Clustering and reassignment-based mapping strategy for message-passing architectures. Journal of Systems Architecture, 2003, 48, 267-283.	2.5	13
76	The Tool DÃ $\!\!\!\mid\!\!\!\mid$ mon Protocol (TDP). , 2003, , .		6
77	An asynchronous and iterative load balancing algorithm for discrete load model. Journal of Parallel and Distributed Computing, 2002, 62, 1729-1746.	2.7	29
78	Optimization of Fire Propagation Model Inputs: A Grand Challenge Application on Metacomputers. Lecture Notes in Computer Science, 2002, , 447-451.	1.0	3
79	Evolutionary Optimization Techniques on Computational Grids. Lecture Notes in Computer Science, 2002, , 513-522.	1.0	9
80	Scheduling of parallel programs including dynamic loops. Future Generation Computer Systems, 1994, 10, 301-304.	4.9	0
81	Clustering and reassignment-based mapping strategy for message-passing architectures. , 0, , .		8