Hirofumi Kanoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993043/publications.pdf Version: 2024-02-01

		25014	30058
214	11,789	57	103
papers	citations	h-index	g-index
222	227	777	11255
227	227	227	11255
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mesopore-Modified Zeolites:Â Preparation, Characterization, and Applications. Chemical Reviews, 2006, 106, 896-910.	23.0	1,016
2	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	4.5	588
3	Manganese oxide porous crystals. Journal of Materials Chemistry, 1999, 9, 319-333.	6.7	476
4	ZSM-5 Monolith of Uniform Mesoporous Channels. Journal of the American Chemical Society, 2003, 125, 6044-6045.	6.6	466
5	Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2007, 129, 20-21.	6.6	305
6	Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4. Industrial & Engineering Chemistry Research, 2001, 40, 2054-2058.	1.8	271
7	Novel Expansion/Shrinkage Modulation of 2D Layered MOF Triggered by Clathrate Formation with CO2Molecules. Nano Letters, 2006, 6, 2581-2584.	4.5	254
8	Effect of Nanoscale Curvature of Single-Walled Carbon Nanotubes on Adsorption of Polycyclic Aromatic Hydrocarbons. Nano Letters, 2007, 7, 583-587.	4.5	253
9	Lattice Dynamics and Vibrational Spectra of Lithium Manganese Oxides:Â A Computer Simulation and Spectroscopic Study. Journal of Physical Chemistry B, 1999, 103, 5175-5180.	1.2	242
10	Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions. Langmuir, 2000, 16, 4154-4164.	1.6	234
11	Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir, 1992, 8, 1861-1867.	1.6	203
12	Quantum Effects on Hydrogen Isotope Adsorption on Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2005, 127, 7511-7516.	6.6	189
13	Doubleâ^'Step Gas Sorption of a Twoâ^'Dimensional Metalâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 12362-12363.	6.6	189
14	A New Type of Manganese Oxide (MnO2·0.5H2O) Derived from Li1.6Mn1.6O4and Its Lithium Ion-Sieve Properties. Chemistry of Materials, 2000, 12, 3151-3157.	3.2	188
15	Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions. Chemistry of Materials, 1995, 7, 1226-1232.	3.2	160
16	Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase. Chemistry of Materials, 1995, 7, 148-153.	3.2	152
17	Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating. Journal of Physical Chemistry B, 2003, 107, 10974-10976.	1.2	148
18	Affinity Transformation from Hydrophilicity to Hydrophobicity of Water Molecules on the Basis of Adsorption of Water in Graphitic Nanopores. Journal of the American Chemical Society, 2004, 126, 1560-1562.	6.6	138

#	Article	IF	CITATIONS
19	Opening Mechanism of Internal Nanoporosity of Single-Wall Carbon Nanohorn. Journal of Physical Chemistry B, 2005, 109, 14319-14324.	1.2	130
20	The addition of mesoporosity to activated carbon fibers by a simple reactivation process. Carbon, 2005, 43, 855-857.	5.4	126
21	Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chemistry of Materials, 1995, 7, 1722-1727.	3.2	122
22	Phenanthrene Adsorption from Solution on Single Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 16219-16224.	1.2	122
23	Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of Hazardous Materials, 2012, 221-222, 220-227.	6.5	119
24	Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions. International Journal of Molecular Sciences, 2010, 11, 3803-3845.	1.8	113
25	Super Flexibility of a 2D Cu-Based Porous Coordination Framework on Gas Adsorption in Comparison with a 3D Framework of Identical Composition: Framework Dimensionality-Dependent Gas Adsorptivities. Journal of the American Chemical Society, 2011, 133, 10512-10522.	6.6	112
26	Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 2007, 314, 18-24.	5.0	110
27	Direct Evidence on Câ^'C Single Bonding in Single-Wall Carbon Nanohorn Aggregates. Journal of Physical Chemistry C, 2007, 111, 5572-5575.	1.5	104
28	Elastic layer-structured metal organic frameworks (ELMs). Journal of Colloid and Interface Science, 2009, 334, 1-7.	5.0	104
29	Restricted Hydration Structures of Rb and Br Ions Confined in Slit-Shaped Carbon Nanospace. Journal of the American Chemical Society, 2002, 124, 11860-11861.	6.6	96
30	Electrochemical Intercalation of Alkali-Metal Ions into Birnessite-Type Manganese Oxide in Aqueous Solution. Langmuir, 1997, 13, 6845-6849.	1.6	94
31	Quantum Sieving Effect of Three-Dimensional Cu-Based Organic Framework for H ₂ and D ₂ . Journal of the American Chemical Society, 2008, 130, 6367-6372.	6.6	94
32	Synthesis of Mesoporous Zeolite A by Resorcinolâ^'Formaldehyde Aerogel Templating. Langmuir, 2005, 21, 504-507.	1.6	93
33	Reversible Structural Change of Cu-MOF on Exposure to Water and Its CO ₂ Adsorptivity. Langmuir, 2009, 25, 4510-4513.	1.6	90
34	Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation. Journal of Materials Chemistry, 2000, 10, 1903-1909.	6.7	89
35	Effects of Gas Adsorption on the Electrical Conductivity of Single-Wall Carbon Nanohorns. Nano Letters, 2006, 6, 1325-1328.	4.5	89
36	Flexible transparent conducting single-wall carbon nanotube film with network bridging method. Journal of Colloid and Interface Science, 2008, 318, 365-371.	5.0	87

#	Article	IF	CITATIONS
37	Preparation of Plate-Form Manganese Oxide by Selective Lithium Extraction from Monoclinic Li2MnO3under Hydrothermal Conditions. Chemistry of Materials, 2000, 12, 3271-3279.	3.2	86
38	Confinement in Carbon Nanospace-Induced Production of KI Nanocrystals of High-Pressure Phase. Journal of the American Chemical Society, 2011, 133, 10344-10347.	6.6	86
39	Theoretical Estimation of Lithium Isotopic Reduced Partition Function Ratio for Lithium Ions in Aqueous Solution. Journal of Physical Chemistry A, 2001, 105, 602-613.	1.1	81
40	Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating. Journal of Physical Chemistry B, 2005, 109, 194-199.	1.2	79
41	Cluster-Associated Filling of Water in Hydrophobic Carbon Micropores. Journal of Physical Chemistry B, 2004, 108, 14043-14048.	1.2	78
42	Quantum Effects on Hydrogen Adsorption in Internal Nanospaces of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2004, 108, 17457-17465.	1.2	75
43	Adsorption Behaviors of HiPco Single-Walled Carbon Nanotube Aggregates for Alcohol Vapors. Journal of Physical Chemistry B, 2002, 106, 8994-8999.	1.2	74
44	Cluster-Growth-Induced Water Adsorption in Hydrophobic Carbon Nanopores. Journal of Physical Chemistry B, 2004, 108, 14964-14969.	1.2	72
45	Enhancement of the methylene blue adsorption rate for ultramicroporous carbon fiber by addition of mesopores. Carbon, 2006, 44, 1884-1890.	5.4	71
46	Selective electroinsertion of lithium ions into a platinum/.lambdamanganese dioxide electrode in the aqueous phase. Langmuir, 1991, 7, 1841-1842.	1.6	69
47	Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons. Carbon, 2010, 48, 305-308.	5.4	69
48	Metalâ€lonâ€Dependent Gas Sorptivity of Elastic Layerâ€Structured MOFs. Chemistry - A European Journal, 2009, 15, 7549-7553.	1.7	68
49	Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions. Journal of Materials Chemistry, 2000, 10, 2325-2329.	6.7	67
50	Clathrate-Formation Mediated Adsorption of Methane on Cu-Complex Crystals. Journal of Physical Chemistry B, 2005, 109, 13851-13853.	1.2	67
51	Structures and Stability of Water Nanoclusters in Hydrophobic Nanospaces. Nano Letters, 2005, 5, 227-230.	4.5	67
52	Synthesis of lithium manganese oxide in different lithium ontaining fluxes. Journal of Materials Chemistry, 1999, 9, 2683-2690.	6.7	63
53	Marked Adsorption Irreversibility of Graphitic Nanoribbons for CO ₂ and H ₂ O. Journal of the American Chemical Society, 2011, 133, 14880-14883.	6.6	62
54	Water Cluster Growth in Hydrophobic Solid Nanospaces. Chemistry - A European Journal, 2005, 11, 4890-4894.	1.7	60

#	Article	IF	CITATIONS
55	Kinetic Properties of a Pt / Lambda â€â€‰MnO2 Electrode for the Electroinsertion of Lithium Ions in Aqueous Phase. Journal of the Electrochemical Society, 1995, 142, 702-707.	n an 1.3	59
56	AC Impedance Analysis for Li +  Insertion of a Pt / λ â€â€‰MnO2 Electrode in an Aqueous Electrochemical Society, 1996, 143, 2610-2615.	Phase. Jou 1.3	urnal of the
57	Organic–Inorganic Hybrid Polymerâ€Encapsulated Magnetic Nanobead Catalysts. Chemistry - A European Journal, 2008, 14, 882-885.	1.7	58
58	Synthesis of Thermally Stable Silica-Pillared Layered Manganese Oxide by an Intercalation/Solvothermal Reaction. Chemistry of Materials, 2001, 13, 473-478.	3.2	57
59	Palladium Nanoclusters Deposited on Single-Walled Carbon Nanohorns. Journal of Physical Chemistry B, 2005, 109, 3711-3714.	1.2	55
60	RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS. Journal of Colloid and Interface Science, 2007, 308, 276-284.	5.0	55
61	Quantum Sieving Effect of Modified Activated Carbon Fibers on H2and D2Adsorption at 20 K. Journal of Physical Chemistry B, 2006, 110, 9764-9767.	1.2	54
62	Tuning of Gate Opening of an Elastic Layered Structure MOF in CO ₂ Sorption with a Trace of Alcohol Molecules. Langmuir, 2011, 27, 6905-6909.	1.6	54
63	Synthesis and Borate Uptake of Two Novel Chelating Resins. Industrial & Engineering Chemistry Research, 2002, 41, 133-138.	1.8	53
64	Lithium Ion Extraction from Orthorhombic LiMnO2in Ammonium Peroxodisulfate Solutions. Journal of Solid State Chemistry, 1999, 142, 19-28.	1.4	51
65	Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 117-121.	2.3	51
66	Efficient H2Adsorption by Nanopores of High-Purity Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12636-12637.	6.6	50
67	Effect of a Quaternary Ammonium Salt on Propylene Carbonate Structure in Slit-Shape Carbon Nanopores. Journal of the American Chemical Society, 2010, 132, 2112-2113.	6.6	49
68	Evaluation of an Effective Gas Storage Amount of Latent Nanoporous Cu-Based Metalâ^'Organic Framework. Journal of Physical Chemistry C, 2007, 111, 248-254.	1.5	47
69	Li+ Extraction/Insertion Reactions with LiZn0.5Mn1.5O4 Spinel in the Aqueous Phase. Chemistry of Materials, 1995, 7, 379-384.	3.2	46
70	Conductive and Mesoporous Single-Wall Carbon Nanohorn/Organic Aerogel Composites. Langmuir, 2007, 23, 9155-9157.	1.6	45
71	Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment. Carbon, 2002, 40, 1231-1239.	5.4	44
72	Preparing a Magnetically Responsive Single-Wall Carbon Nanohorn Colloid by Anchoring Magnetite Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 7165-7170.	1.2	44

#	Article	IF	CITATIONS
73	Gas Adsorption Mechanism and Kinetics of an Elastic Layer-Structured Metal–Organic Framework. Journal of Physical Chemistry C, 2012, 116, 4157-4162.	1.5	44
74	Lithium(1+) and magnesium(2+) extraction and lithium(1+) insertion reactions with lithium magnesium manganese oxide (LiMg0.5Mn1.5O4) spinel in the aqueous phase. Chemistry of Materials, 1993, 5, 311-316.	3.2	41
75	Evidence of Dynamic Pentagonâ`'Heptagon Pairs in Single-Wall Carbon Nanotubes using Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2010, 132, 6764-6767.	6.6	41
76	Adsorption of water on three-dimensional pillared-layer metal organic frameworks. Journal of Colloid and Interface Science, 2007, 314, 422-426.	5.0	40
77	Rapid Water Transportation through Narrow One-Dimensional Channels by Restricted Hydrogen Bonds. Langmuir, 2013, 29, 1077-1082.	1.6	40
78	Equilibrium Potentials of Spinelâ€īype Manganese Oxide in Aqueous Solutions. Journal of the Electrochemical Society, 1993, 140, 3162-3166.	1.3	39
79	Synthesis of Layered-Type Hydrous Manganese Oxides from Monoclinic-Type LiMnO2. Journal of Solid State Chemistry, 2001, 160, 69-76.	1.4	39
80	Thermal-Treatment-Induced Enhancement in Effective Surface Area of Single-Walled Carbon Nanohorns for Supercapacitor Application. Journal of Physical Chemistry C, 2013, 117, 25877-25883.	1.5	39
81	Quantum Effects on Hydrogen Isotopes Adsorption inÂNanopores. Journal of Low Temperature Physics, 2009, 157, 352-373.	0.6	38
82	Dynamic Changes in Dimensional Structures of Co-Complex Crystals. Inorganic Chemistry, 2010, 49, 9247-9252.	1.9	37
83	Enhancement of H2 and CH4 adsorptivities of single wall carbon nanotubes produced by mixed acid treatment. Carbon, 2008, 46, 611-617.	5.4	36
84	Enhanced Hydrogen Adsorptivity of Single-Wall Carbon Nanotube Bundles by One-Step C ₆₀ -Pillaring Method. Nano Letters, 2009, 9, 3694-3698.	4.5	35
85	Intensive Edge Effects of Nanographenes in Molecular Adsorptions. Journal of Physical Chemistry Letters, 2012, 3, 511-516.	2.1	35
86	Magnetic Spin States of O2Confined in a Graphitic Slit-Shaped Nanospace at Low Temperature. The Journal of Physical Chemistry, 1996, 100, 755-759.	2.9	34
87	A novel nanoporous graphitic composite. Chemical Communications, 2002, , 1696-1697.	2.2	34
88	Examination of synthesis conditions for graphite-derived nanoporous carbon–silica composites. Carbon, 2006, 44, 2479-2488.	5.4	34
89	Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption, 2006, 12, 309-316.	1.4	34
90	Catalytic activities of Pd-tailored single wall carbon nanohorns. Carbon, 2008, 46, 172-175.	5.4	34

#	Article	IF	CITATIONS
91	Comparative examination of titania nanocrystals synthesized by peroxo titanic acid approach from different precursors. Journal of Colloid and Interface Science, 2008, 322, 497-504.	5.0	33
92	Anomaly of CH ₄ Molecular Assembly Confined in Single-Wall Carbon Nanohorn Spaces. Journal of the American Chemical Society, 2011, 133, 2022-2024.	6.6	33
93	Significant Hydration Shell Formation Instead of Hydrogen Bonds in Nanoconfined Aqueous Electrolyte Solutions. Journal of the American Chemical Society, 2012, 134, 17850-17853.	6.6	33
94	Direct Thermal Fluorination of Single Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2004, 108, 9614-9618.	1.2	32
95	Kinetics and Structural Changes in CO ₂ Capture of K ₂ CO ₃ under a Moist Condition. Energy & Fuels, 2015, 29, 4472-4478.	2.5	32
96	Quantum Molecular Sieving Effects of H ₂ and D ₂ on Bundled and Nonbundled Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 20918-20922.	1.5	31
97	Double-Step Gate Phenomenon in CO ₂ Sorption of an Elastic Layer-Structured MOF. Langmuir, 2016, 32, 9722-9726.	1.6	29
98	Direct α-Hydroxylation of Ketones Catalyzed by Organic–Inorganic Hybrid Polymer. Chemistry Letters, 2006, 35, 1094-1095.	0.7	28
99	Coordination Symmetry-Dependent Structure Restoration Function of One-Dimensional MOFs by Molecular Respiration. Journal of Physical Chemistry B, 2006, 110, 25565-25567.	1.2	27
100	Novel Nanostructures of Porous Carbon Synthesized with Zeolite LTA-Template and Methanol. Journal of Physical Chemistry C, 2007, 111, 2459-2464.	1.5	27
101	Fine Nanostructure Analysis of Single-Wall Carbon Nanohorns by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2008, 112, 7552-7556.	1.5	27
102	Pyrolyzed phthalocyanines as surrogate carbon catalysts: Initial insights into oxygen-transfer mechanisms. Fuel, 2012, 99, 106-117.	3.4	27
103	Nanoscale Curvature Effect on Ordering of N ₂ Molecules Adsorbed on Single Wall Carbon Nanotube. Journal of Physical Chemistry C, 2007, 111, 15660-15663.	1.5	26
104	Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 2013, 61, 40-46.	5.4	26
105	Lithium Isotope Fractionations on Inorganic Ion-Exchangers with Different Ion-Sieve Properties. Separation Science and Technology, 1995, 30, 3761-3770.	1.3	25
106	Cluster Structures of Supercritical CH4Confined in Carbon Nanospaces with in Situ High-Pressure Small-Angle X-ray Scattering and Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry B, 2004, 108, 27-30.	1.2	25
107	Micropore to Macropore Structure-Designed Silicas with Regulated Condensation of Silicic Acid Nanoparticles. Langmuir, 2005, 21, 8042-8047.	1.6	25
108	Vertically Oriented Propylene Carbonate Molecules and Tetraethyl Ammonium Ions in Carbon Slit Pores. Journal of Physical Chemistry C, 2013, 117, 5752-5757.	1.5	25

#	Article	IF	CITATIONS
109	Synthesis of o-LiMnO2 by Microwave Irradiation and StudyIts Heat Treatment and Lithium Exchange. Journal of Solid State Chemistry, 2002, 163, 1-4.	1.4	24
110	Magnetically Separable Cu-Carboxylate MOF Catalyst for the Henry Reaction. Synlett, 2012, 23, 1549-1553.	1.0	24
111	Random Magnetism of O2 Confined in a Slit-Shaped Graphitic Nanospace at Low Temperature. The Journal of Physical Chemistry, 1995, 99, 5746-5748.	2.9	23
112	Catalytic Synthesis of α-Hydroxy Ketones Using Organic–Inorganic Hybrid Polymer. Chemistry Letters, 2005, 34, 1590-1591.	0.7	23
113	Quasi One-Dimensional Nanopores in Single-Wall Carbon Nanohorn Colloids Using Grand Canonical Monte Carlo Simulation Aided Adsorption Technique. Journal of Physical Chemistry B, 2005, 109, 8659-8662.	1.2	23
114	Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers. Carbon, 2007, 45, 1391-1395.	5.4	23
115	Unique Hydrogen-Bonded Structure of Water around Ca Ions Confined in Carbon Slit Pores. Journal of Physical Chemistry C, 2009, 113, 12622-12624.	1.5	23
116	Superuniform Molecular Nanogate Fabrication on Graphene Sheets of Single Wall Carbon Nanohorns for Selective Molecular Separation of CO2 and CH4. Chemistry Letters, 2011, 40, 1089-1091.	0.7	23
117	Electrochromic Behavior of a Lambda―MnO2 Electrode Accompanying Li + â€Insertion in an Aqueous Phase. Journal of the Electrochemical Society, 1996, 143, 905-907.	1.3	22
118	Supercritical Hydrogen Adsorption of Ultramicropore-Enriched Single-Wall Carbon Nanotube Sheet. Journal of Physical Chemistry C, 2007, 111, 17448-17450.	1.5	22
119	Structural Anomalies of Rb and Br Ionic Nanosolutions in Hydrophobic Slit-Shaped Solid Space as Revealed by the EXAFS Technique. Journal of Physical Chemistry B, 2003, 107, 13616-13622.	1.2	21
120	Selective D ₂ adsorption enhanced by the quantum sieving effect on entangled single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2010, 22, 334207.	0.7	21
121	Influence of surface functionalities on ethanol adsorption characteristics in activated carbons for adsorption heat pumps. Applied Thermal Engineering, 2014, 72, 160-165.	3.0	21
122	Wide Carbon Nanopores as Efficient Sites for the Separation of SF6 from N2. Scientific Reports, 2015, 5, 11994.	1.6	21
123	Nanoporosities and catalytic activities of Pd-tailored single wall carbon nanohorns. Journal of Colloid and Interface Science, 2008, 322, 209-214.	5.0	18
124	Mechanism of Sequential Water Transportation by Water Loading and Release in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 1211-1215.	2.1	18
125	Electronically modified single wall carbon nanohorns with iodine adsorption. Chemical Physics Letters, 2011, 501, 485-490.	1.2	17
126	A flexible two-dimensional layered metal–organic framework functionalized with (trifluoromethyl)trifluoroborate: synthesis, crystal structure, and adsorption/separation properties. Dalton Transactions, 2020, 49, 3692-3699.	1.6	17

#	Article	IF	CITATIONS
127	Porous properties of poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate) resins synthesized by suspension polymerization. Journal of Applied Polymer Science, 2002, 83, 2374-2381.	1.3	16
128	New approach to determination of surface heterogeneity of adsorbents and catalysts from the temperature programmed desorption (TPD) technique: One step beyond the condensation approximation (CA) method. Journal of Colloid and Interface Science, 2005, 291, 334-344.	5.0	16
129	High capacitance carbon-based xerogel film produced without critical drying. Applied Physics Letters, 2008, 93, 193112.	1.5	16
130	Physico-Chemical Properties of Iodine-Adsorbed Single-Walled Carbon Nanotubes. Langmuir, 2009, 25, 1795-1799.	1.6	16
131	Interstitial nanopore change of single wall carbon nanohorn assemblies with high temperature treatment. Chemical Physics Letters, 2004, 389, 332-336.	1.2	15
132	The evaluation of the surface heterogeneity of carbon blacks from the lattice density functional theory. Carbon, 2004, 42, 1813-1823.	5.4	15
133	Recyclable Polyâ€Zn ₃ (OAc) ₄ –3,3′â€Bis(aminoimino)binaphthoxide Catalyst for Asymmetric Iodolactonization. ChemCatChem, 2015, 7, 3234-3238.	1.8	15
134	Gaseous Molecular Sieving Property of a Microporous Hollandite-type Hydrous Manganese Oxide. Chemistry Letters, 2000, 29, 560-561.	0.7	14
135	Predominant nanoice growth in single-walled carbon nanotubes by water-vapor loading. RSC Advances, 2012, 2, 3634.	1.7	14
136	Enhanced CO ₂ Adsorptivity of Partially Charged Single Walled Carbon Nanotubes by Methylene Blue Encapsulation. Journal of Physical Chemistry C, 2012, 116, 11216-11222.	1.5	14
137	Energetic contribution to hydration shells in one-dimensional aqueous electrolyte solution by anomalous hydrogen bonds. Physical Chemistry Chemical Physics, 2013, 15, 5658.	1.3	14
138	Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma. Colloids and Surfaces B: Biointerfaces, 2015, 126, 58-62.	2.5	14
139	Magnetic spin clusters of O2 confined in a slit-shaped graphitic nanosapce at low temperature. Chemical Physics Letters, 1995, 237, 329-333.	1.2	13
140	Molecular States of O2 Confined in a Carbon Nanospace from the Low-Temperature Magnetic Susceptibility. Langmuir, 1997, 13, 1047-1053.	1.6	13
141	Adsorptivities of Extremely High Surface Area Activated Carbon Fibres for CH ₄ and H ₂ . Adsorption Science and Technology, 2009, 27, 877-881.	1.5	13
142	Fundamentals in CO2 capture of Na2CO3 under a moist condition. Journal of Energy Chemistry, 2017, 26, 972-983.	7.1	13
143	Pore characterization of assembly-structure controlled single wall carbon nanotube. Adsorption, 2007, 13, 509-514.	1.4	12
144	Fine pore mouth structure of molecular sieve carbon withÂGCMC-assisted supercritical gas adsorption analysis. Adsorption, 2009, 15, 114-122.	1.4	12

#	Article	IF	CITATIONS
145	Efficient production of H2 and carbon nanotube from CH4 over single wall carbon nanohorn. Chemical Physics Letters, 2009, 482, 269-273.	1.2	12
146	Facilitation of Water Penetration through Zero-Dimensional Gates on Rolled-up Graphene by Cluster–Chain–Cluster Transformations. Journal of Physical Chemistry C, 2012, 116, 12339-12345.	1.5	12
147	Clathrate Formation Mechanism of Supercritical Hydrogen Adsorption on Copper(II) Benzoate Pyrazine. Langmuir, 2007, 23, 5264-5266.	1.6	11
148	Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube. Adsorption, 2011, 17, 643-651.	1.4	11
149	Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT) by Liquid-Phase Molecular Adsorption of Hexaiodobenzene. Materials, 2013, 6, 535-543.	1.3	11
150	Systematic sorption studies of camptothecin on oxidized single-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 121-132.	2.3	11
151	Formation and Growth of Spinel-type LiMn2O4Single Crystals by LiCl–MnCl2Flux Evaporation. Chemistry Letters, 2001, 30, 524-525.	0.7	10
152	Coordinated NH3-Removal-Induced Hydrogen Adsorption of Cu-Complex Crystals. Langmuir, 2008, 24, 170-174.	1.6	10
153	Formation of COx-Free H2 and Cup-Stacked Carbon Nanotubes over Nano-Ni Dispersed Single Wall Carbon Nanohorns. Langmuir, 2012, 28, 7564-7571.	1.6	10
154	Temperature-Dependent Double-Step CO ₂ Occlusion of K ₂ CO ₃ under Moist Conditions. Adsorption Science and Technology, 2015, 33, 243-250.	1.5	10
155	Advantaging Synergy Photocatalysis with Grapheneâ€Related Carbon as a Counterpart Player of Titania. Chemical Record, 2019, 19, 1393-1406.	2.9	10
156	Full-Color Magnetic Nanoparticles Based on Holmium-Doped Polymers. ACS Applied Polymer Materials, 2020, 2, 1800-1806.	2.0	10
157	CO ₂ Capture by a K ₂ CO ₃ –Carbon Composite under Moist Conditions. Industrial & Engineering Chemistry Research, 2020, 59, 3405-3412.	1.8	10
158	Synthesis of Silica-pillared Microporous Manganese Oxide. Chemistry Letters, 2000, 29, 390-391.	0.7	9
159	NH3 desorption and decomposition behavior on microporous hollandite-type hydrous manganese oxide. Catalysis Today, 2001, 68, 111-118.	2.2	9
160	Mechanochemically Induced sp ³ -Bond-Associated Reconstruction of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry C, 2008, 112, 8759-8762.	1.5	9
161	Fractionation of Lithium Isotopes by Intercalation in Layered Inorganic Ion Exchangers. Chemistry Letters, 1998, 27, 77-78.	0.7	8
162	Nanosolution as a New Turn of Nanoconfinement for Fluids. Australian Journal of Chemistry, 2003, 56, 1013.	0.5	8

#	Article	IF	CITATIONS
163	Magnetism of Organic Radical Molecules Confined in Nanospace of Single-Wall Carbon Nanohorn. Journal of Physical Chemistry C, 2007, 111, 10213-10216.	1.5	8
164	Choking Effect of Single-Wall Carbon Nanotubes on Solvent Adsorption in Radial Breathing Mode. Journal of Physical Chemistry C, 2007, 111, 3220-3223.	1.5	8
165	Diffusionâ€Barrierâ€Free Porous Carbon Monoliths as a New Form of Activated Carbon. ChemSusChem, 2012, 5, 2271-2277.	3.6	8
166	Cooperative Adsorption of Supercritical CH ₄ in Single-Walled Carbon Nanohorns for Compensation of Nanopore Potential. Journal of Physical Chemistry C, 2012, 116, 21870-21873.	1.5	8
167	Pore-size dependent effects on structure and vibrations of 1-ethyl-3-methylimidazolium tetrafluoroborate in nanoporous carbon. Chemical Physics Letters, 2015, 636, 129-133.	1.2	8
168	CO2Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites. International Journal of Chemical Engineering, 2016, 2016, 1-8.	1.4	8
169	Conformational change and aggregation of concanavalin A at high temperatures. International Journal of Biological Macromolecules, 1989, 11, 290-296.	3.6	7
170	Probe Molecule-Dependent Particle Density and its Effect on the Supercritical Gas Adsorption Isotherm of Nanoporous Cu Complex Crystals. Adsorption Science and Technology, 2006, 24, 595-600.	1.5	7
171	Poly-β-Ketoester Particles as a Versatile Scaffold for Lanthanide-Doped Colorless Magnetic Materials. ACS Applied Polymer Materials, 2020, 2, 2170-2178.	2.0	7
172	Local Ordered Structure of Propylene Carbonate in Slit-Shaped Carbon Nanopores by GCMC Simulation. ISRN Nanotechnology, 2011, 2011, 1-5.	1.3	7
173	Lithium Isotope Fractionation during Transport through Liquid Membrane with Oligomethylene-bridged Bisphenanthroline Derivatives. Chemistry Letters, 1997, 26, 615-616.	0.7	6
174	New Route for Preparation of Layered Manganese Oxides with Multivalent Metals in the Interlayer. Chemistry Letters, 2001, 30, 612-613.	0.7	6
175	Theoretical Estimation of the Solvent Effect of the Lithium Isotopic Reduced Partition Function Ratio. Journal of Physical Chemistry A, 2003, 107, 7832-7844.	1.1	6
176	Synthesis and characterization of nanoporous metallic platinum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 199-202.	2.3	6
177	Hydrogen absorption enhancement of nanocrystalline Li3N/Li2C2 composite. International Journal of Hydrogen Energy, 2011, 36, 12902-12908.	3.8	6
178	CO ₂ Adsorption Properties of Activated Carbon Fibres under Ambient Conditions. Adsorption Science and Technology, 2012, 30, 621-626.	1.5	6
179	Preparation and Characterization of Conducting Mixed-Valence 9,9′-Dimethyl-3,3′-bicarbazyl Rectangular Nanowires. Langmuir, 2012, 28, 16430-16435	1.6	6
180	Fundamental Understanding of Nanoporous Carbons for Energy Application Potentials. Carbon Letters, 2009, 10, 177-180.	3.3	6

#	Article	IF	CITATIONS
181	A sulfated proteoglycan from the red alga Gracilaria verrucosa is a hemagglutinin. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 445-449.	0.2	5
182	Room-temperature Formation of Alkoxide-derived Anatase Nanoparticles by Peroxotitanic Acid Approach. Chemistry Letters, 2007, 36, 1094-1095.	0.7	5
183	Synthesis and Adsorption Characteristics of Nanoporous Graphite-Derived Carbon-Silica Composites. Adsorption, 2005, 11, 725-730.	1.4	4
184	Characterization of alkaline post-treated ZSM-5 zeolites by low temperature nitrogen adsorption. Studies in Surface Science and Catalysis, 2007, , 279-286.	1.5	4
185	Preparation of the Na ₂ CO ₃ –Carbon Nanocomposite and Its CO ₂ Capture. Energy & Fuels, 2018, 32, 12689-12694.	2.5	4
186	Fractionation of Boron Isotopes to Bis(2-hydroxyalkyl)amine Borate and Boric Acid in Aqueous Solutions. Chemistry Letters, 1999, 28, 1153-1154.	0.7	3
187	Determination of the Chemical Bonding of Ionic Lithium and Proton Exchange in Spinel-Type Manganese Oxides. Bulletin of the Chemical Society of Japan, 2002, 75, 55-58.	2.0	3
188	Mesopore Development in Activated Carbon Fibres by Additional Chemical Activation. Adsorption Science and Technology, 2006, 24, 427-432.	1.5	3
189	Effect of embedded metal compound on porosity of silica colloids prepared by spray reaction of silicon tetrachloride. Journal of Colloid and Interface Science, 2006, 295, 482-489.	5.0	3
190	Pore-Width-Dependent Preferential Interaction of sp ² Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	3
191	Effects of Hydrophobic Nanospaces on Structures of Lysozyme. Adsorption Science and Technology, 2015, 33, 63-69.	1.5	3
192	Magnetic Properties of Diaminoglyoxime Complexes with a Slipped-Stack Structure (2,3-Diamino-1,4-diazabuta-1,3-diene-1,4-diol)bis(2,3-diamino-4-hydroxy-1,4-diazabuta- 1,3-dien-1-olato)MII(M) T	j E TQ qO O	0 æBT /Overl
193	Electronic Structure and Chemical Bonding of Li and Protons in Spinel Type Manganese Oxides by Cluster Calculation. Chemistry Letters, 2000, 29, 1224-1225.	0.7	2
194	Adsorptive Properties of Novel Nanoporous Materials. Journal of Chemical Engineering of Japan, 2007, 40, 1159-1165.	0.3	2
195	Effects of CuCl ₂ on the dimerâ€ŧetramer equilibrium of concanavalin A. International Journal of Peptide and Protein Research, 1987, 30, 102-107.	0.1	2
196	A new route to nanoscale ceramics in asymmetric reaction fields of carbon nanospaces. RSC Advances, 2014, 4, 32647-32650.	1.7	2
197	Adsorption Properties of Methane, Ethane, and Hexane on Mesoporous Organic Polymers Prepared by the Flash Freezing Method. Langmuir, 2020, 36, 2184-2190.	1.6	2
198	Structural Dynamics of An ELM-11 Framework Transformation Accompanied with Double-Step CO2 Gate sorption: An NMR Spin Relaxation Study. Crystals, 2020, 10, 328.	1.0	2

#	Article	IF	CITATIONS
199	Colorless Magnetic Colloidal Particles Based on an Amorphous Metalâ€Organic Framework Using Holmium as the Metal Species ChemNanoMat, 2022, 8, .	1.5	2
200	Calorimetric Study of the CO2 Gate Sorption of Elastic Layer-Structured Metal–Organic Frameworks (ELM-11 and ELM-12). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129745.	2.3	2
201	Cooperative conformational change and aggregation of concanavalin A in alkaline solutions. International Journal of Biological Macromolecules, 1988, 10, 337-342.	3.6	1
202	Preparation of Plate-shaped Crystals of Li2MnO3by Reaction at a Solid/LiCl-Flux/Air Interface in a Tilted Crucible. Chemistry Letters, 2000, 29, 216-217.	0.7	1
203	ESCA and Vibrational Spectroscopy of Alkali Cation Exchanged Manganic Acids with the 2×2 type Tunnel Structure Synthesized via Different Chemical Routes. Materials Research Society Symposia Proceedings, 2000, 658, 6251.	0.1	1
204	Activated Carbon Fibres of Different Cross-Sectional Morphologies. Adsorption Science and Technology, 2004, 22, 517-522.	1.5	1
205	Supercritical Hydrogen Adsorptivity of Amorphous Carbon Mesotubes. Adsorption Science and Technology, 2011, 29, 819-829.	1.5	1
206	Lithium Magnesium Manganese Oxides Prepared from Mg-Birnessite or Mg-Todorokite by a LiNO3Flux Method. Chemistry Letters, 2000, 29, 1192-1193.	0.7	0
207	Structure of Molecules and Ions Confined in Carbon Nanospaces. ECS Meeting Abstracts, 2007, , .	0.0	Ο
208	Mesoporous Ni–Fe Alloys. Adsorption Science and Technology, 2008, 26, 581-588.	1.5	0
209	Fuel Cell-Related Reaction Activities of Nanoporous Metallic Platinum. Adsorption Science and Technology, 2010, 28, 39-47.	1.5	0
210	Temperature dependence of water structure in carbon nanotubes. Tanso, 2013, 2013, 195-200.	0.1	0
211	Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition. Chemical Physics Letters, 2016, 652, 199-202.	1.2	0
212	Nanostructured silicon ferromagnet collected by a permanent neodymium magnet. Chemical Communications, 2017, 53, 12882-12885.	2.2	0
213	Structural Change Accompanied by Gas Sorption of Coordination Polymers (Metal-Organic) Tj ETQq1 1 0.78431 108-112.	.4 rgBT /O 0.0	verlock 10 Tf. O
214	Front Cover: Colorless Magnetic Colloidal Particles Based on an Amorphous Metalâ€Organic Framework Using Holmium as the Metal Species. (ChemNanoMat 7/2022). ChemNanoMat, 2022, 8, .	1.5	0