
Ingeborg Klaassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Progress in Retinal and Eye Research, 2013, 34, 19-48.	15.5	539
2	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
3	The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy. PLoS ONE, 2008, 3, e2675.	2.5	197
4	CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis, 2012, 15, 151-163.	7.2	178
5	Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia, 2012, 55, 845-854.	6.3	131
6	A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. British Journal of Ophthalmology, 2012, 96, 587-590.	3.9	129
7	The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Scientific Reports, 2019, 9, 12608.	3.3	113
8	Altered expression of genes related to blood–retina barrier disruption in streptozotocin-induced diabetes. Experimental Eye Research, 2009, 89, 4-15.	2.6	93
9	The role of CTGF in diabetic retinopathy. Experimental Eye Research, 2015, 133, 37-48.	2.6	88
10	Differential TGF-β Signaling in Retinal Vascular Cells: A Role in Diabetic Retinopathy?. , 2010, 51, 1857.		84
11	Endothelial Tip Cells in Ocular Angiogenesis. Journal of Histochemistry and Cytochemistry, 2013, 61, 101-115.	2.5	82
12	A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Experimental Eye Research, 2012, 96, 181-190.	2.6	79
13	The role of plasmalemma vesicle-associated protein in pathological breakdown of blood–brain and blood–brain and blood–brain and blood–brain and blood–brain and blood— blood–brain and blood— blood–brain and blood— brain and blood†bloodâ blood†blood†blood†bloodâ bloodâ blo	5.0	74
14	Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia, 2007, 50, 1089-1098.	6.3	70
15	Effect of VEGF-A on Expression of Profibrotic Growth Factor and Extracellular Matrix Genes in the Retina. , 2007, 48, 4267.		69
16	Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina. British Journal of Ophthalmology, 2004, 88, 1082-1087.	3.9	68
17	Molecular analysis of blood–retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Experimental Eye Research, 2014, 122, 123-131.	2.6	63
18	Connective Tissue Growth Factor Is Necessary for Retinal Capillary Basal Lamina Thickening in Diabetic Mice. Journal of Histochemistry and Cytochemistry, 2008, 56, 785-792.	2.5	56

INGEBORG KLAASSEN

#	Article	IF	CITATIONS
19	Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Scientific Reports, 2019, 9, 10414.	3.3	53
20	Plasmalemma Vesicle–Associated Protein Has a Key Role in Blood-Retinal Barrier Loss. American Journal of Pathology, 2016, 186, 1044-1054.	3.8	52
21	Identification of proteins associated with clinical and pathological features of proliferative diabetic retinopathy in vitreous and fibrovascular membranes. PLoS ONE, 2017, 12, e0187304.	2.5	46
22	Active HIF-1 in the Normal Human Retina. Journal of Histochemistry and Cytochemistry, 2010, 58, 247-254.	2.5	44
23	Angiogenesis Is Not Impaired in Connective Tissue Growth Factor (CTGF) Knock-out Mice. Journal of Histochemistry and Cytochemistry, 2007, 55, 1139-1147.	2.5	41
24	Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188446.	7.4	41
25	Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells. Diabetologia, 2018, 61, 2371-2385.	6.3	34
26	Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends in Endocrinology and Metabolism, 2022, 33, 50-71.	7.1	34
27	TNFα-Induced Disruption of the Blood–Retinal Barrier In Vitro Is Regulated by Intracellular 3′,5′-Cyclic Adenosine Monophosphate Levels. , 2017, 58, 3496.		33
28	Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Progress in Retinal and Eye Research, 2022, 87, 100994.	15.5	31
29	Considerations for in vitro retinoid experiments: importance of protein interaction. Biochimica Et Biophysica Acta - General Subjects, 1999, 1427, 265-275.	2.4	30
30	IGF2 and IGF1R identified as novel tip cell genes in primary microvascular endothelial cell monolayers. Angiogenesis, 2018, 21, 823-836.	7.2	30
31	Vitreous TIMP-1 levels associate with neovascularization and TGF-β2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy. Journal of Cell Communication and Signaling, 2013, 7, 1-9.	3.4	29
32	Expression of retinoic acid receptor gamma correlates with retinoic acid sensitivity and metabolism in head and neck squamous cell carcinoma cell lines. International Journal of Cancer, 2001, 92, 661-665.	5.1	28
33	Is leukostasis a crucial step or epiphenomenon in the pathogenesis of diabetic retinopathy?. Journal of Leukocyte Biology, 2017, 102, 993-1001.	3.3	27
34	Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression. PLoS ONE, 2016, 11, e0159478.	2.5	27
35	Complement Factor C3a Alters Proteasome Function in Human RPE Cells and in an Animal Model of Age-Related RPE Degeneration. , 2013, 54, 6489.		24
36	Simultaneous analysis of retinol, all-trans- and 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in plasma by liquid chromatography using on-column concentration after single-phase fluid extraction. Biomedical Applications, 1997, 694, 83-92.	1.7	23

INGEBORG KLAASSEN

#	Article	IF	CITATIONS
37	Anticancer activity and mechanism of action of retinoids in oral and pharyngeal cancer. Oral Oncology, 2002, 38, 532-542.	1.5	23
38	CD34 Promotes Pathological Epi-Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. PLoS ONE, 2016, 11, e0157902.	2.5	23
39	Metabolism and growth inhibition of four retinoids in head and neck squamous normal and malignant cells. British Journal of Cancer, 2001, 85, 630-635.	6.4	21
40	Vascular leucocyte adhesion molecules unaltered in the human retina in diabetes. British Journal of Ophthalmology, 2004, 88, 566-572.	3.9	20
41	microRNA Expression Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients and Differences from Patients Treated with Anti-VEGF Therapy. Translational Vision Science and Technology, 2020, 9, 16.	2.2	19
42	Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines. British Journal of Cancer, 1997, 76, 189-197.	6.4	18
43	Expression patterns of endothelial permeability pathways in the development of the bloodâ€retinal barrier in mice. FASEB Journal, 2019, 33, 5320-5333.	0.5	16
44	IGF-binding proteins 3 and 4 are regulators of sprouting angiogenesis. Molecular Biology Reports, 2020, 47, 2561-2572.	2.3	16
45	Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes. Journal of Histochemistry and Cytochemistry, 2014, 62, 109-118.	2.5	14
46	Involvement of the ubiquitin-proteasome system in the expression of extracellular matrix genes in retinal pigment epithelial cells. Biochemistry and Biophysics Reports, 2018, 13, 83-92.	1.3	14
47	Spatial and temporal recruitment of the neurovascular unit during development of the mouse blood-retinal barrier. Tissue and Cell, 2018, 52, 42-50.	2.2	14
48	Enhanced turnover of all-trans-retinoic acid and increased formation of polar metabolites in head and neck squamous cell carcinoma lines compared with normal oral keratinocytes. Clinical Cancer Research, 2001, 7, 1017-25.	7.0	14
49	The Role of Heparan Sulfate and Neuropilin 2 in VEGFA Signaling in Human Endothelial Tip Cells and Non-Tip Cells during Angiogenesis In Vitro. Cells, 2021, 10, 926.	4.1	13
50	Anti-angiogenic effects of crenolanib are mediated by mitotic modulation independently of PDGFR expression. British Journal of Cancer, 2019, 121, 139-149.	6.4	12
51	All-trans retinoic acid induced gene expression and growth inhibition in head and neck cancer cell lines. Oral Oncology, 1997, 33, 270-274.	1.5	9
52	Glucocorticoids exert differential effects on the endothelium in an <i>inÂvitro</i> model of the blood–retinal barrier. Acta Ophthalmologica, 2019, 97, 214-224.	1.1	8
53	PDGF as an Important Initiator for Neurite Outgrowth Associated with Fibrovascular Membranes in Proliferative Diabetic Retinopathy. Current Eye Research, 2022, 47, 277-286.	1.5	6
54	Nonmalignant Oral Keratinocytes from Patients with Head and Neck Squamous Cell Carcinoma Show Enhanced Metabolism of Retinoic Acid. Oncology, 2002, 63, 56-63.	1.9	5

INGEBORG KLAASSEN

#	Article	IF	CITATIONS
55	Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells. Ophthalmic Research, 2018, 59, 98-109.	1.9	5
56	Microvascular Complications in theÂEye: Diabetic Retinopathy. , 2019, , 305-321.		5
57	Plasma retinoid levels in head and neck cancer patients: a comparison with healthy controls and the effect of retinyl palmitate treatment. Oral Oncology, 1999, 35, 40-44.	1.5	4
58	The Effect of Internal Limiting Membrane Cleaning on Epiretinal Membrane Formation after Vitrectomy for Proliferative Diabetic Retinopathy. Ophthalmologica, 2020, 243, 426-435.	1.9	3
59	Exfoliated oral cell messenger RNA: suitability for biomarker studies. Cancer Epidemiology Biomarkers and Prevention, 1998, 7, 469-72.	2.5	3
60	Association of Circulating Markers With Outcome Parameters in the Bevacizumab and Ranibizumab in Diabetic Macular Edema Trial. , 2016, 57, 6234.		2
61	CD34 marks angiogenic tip cells in human vascular endothelial cell cultures: a new model to study mechanisms of ocular angiogenesis. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	1
62	miRNA Levels as a Biomarker for Anti-VEGF Response in Patients with Diabetic Macular Edema. Journal of Personalized Medicine, 2021, 11, 1297.	2.5	1
63	The Role of CTGF in Diabetic Retinopathy. , 2012, , 261-285.		0
64	A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	0
65	A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Acta Ophthalmologica, 2012, 90, 0-0.	1.1	0