Mattias Svensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992681/publications.pdf

Version: 2024-02-01

54 papers

3,562 citations

26 h-index 53 g-index

55 all docs 55 docs citations

55 times ranked 8687 citing authors

#	Article	IF	CITATIONS
1	COVIDâ€19â€specific metabolic imprint yields insights into multiorgan system perturbations. European Journal of Immunology, 2022, 52, 503-510.	1.6	7
2	Immunosuppressive Features of the Microenvironment in Lymph Nodes Granulomas from Tuberculosis and HIV–Co-Infected Patients. American Journal of Pathology, 2022, 192, 653-670.	1.9	7
3	The Karolinska <scp>KI</scp> /K <scp>COVID</scp> â€19 immune atlas: An open resource for immunological research and educational purposes. Scandinavian Journal of Immunology, 2022, 96, .	1.3	4
4	Patients with both Langerhans cell histiocytosis and Crohn's disease highlight a common role of interleukinâ€23. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 1315-1321.	0.7	8
5	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study. Clinical Infectious Diseases, 2021, 72, 293-300.	2.9	61
6	Discriminatory plasma biomarkers predict specific clinical phenotypes of necrotizing soft-tissue infections. Journal of Clinical Investigation, 2021, 131, .	3.9	7
7	High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
8	Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	104
9	Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections. Clinical Infectious Diseases, 2020, 71, 1772-1775.	2.9	18
10	Integrated Univariate, Multivariate, and Correlation-Based Network Analyses Reveal Metabolite-Specific Effects on Bacterial Growth and Biofilm Formation in Necrotizing Soft Tissue Infections. Journal of Proteome Research, 2020, 19, 688-698.	1.8	16
11	Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Frontiers in Medicine, 2020, 7, 537.	1.2	3
12	Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 2020, 183, 158-168.e14.	13.5	1,561
13	The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Scientific Reports, 2020, 10, 17444.	1.6	49
14	High prevalence of peripheral lymphopenia in Langerhans cell histiocytosis. British Journal of Haematology, 2020, 191, 115-119.	1.2	1
15	S100A12 Expression Is Modulated During Monocyte Differentiation and Reflects Periodontitis Severity. Frontiers in Immunology, 2020, 11, 86.	2.2	32
16	Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 127-150.	0.8	10
17	MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology, 2020, 5, .	5.6	147
18	Mannose receptorâ€derived peptides neutralize poreâ€forming toxins and reduce inflammation and development of pneumococcal disease. EMBO Molecular Medicine, 2020, 12, e12695.	3.3	19

#	Article	IF	CITATIONS
19	The INFECT-Project: An International and Multidisciplinary Project on Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 1-6.	0.8	O
20	Systems Biology and Biomarkers in Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 167-186.	0.8	4
21	MMP-12 and S100s in saliva reflect different aspects of periodontal inflammation. Cytokine, 2019, 113, 155-161.	1.4	30
22	Infection with genotoxinâ€producing <i>Salmonella enterica</i> synergises with loss of the tumour suppressor <i>APC</i> in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cellular Microbiology, 2019, 21, e13099.	1.1	26
23	Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 3157.	2.2	32
24	Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity, 2018, 48, 120-132.e8.	6.6	149
25	Novel Models to Study Stromal Cell-Leukocyte Interactions in Health and Disease. Advances in Experimental Medicine and Biology, 2018, 1060, 131-146.	0.8	2
26	Human Organotypic Respiratory Models. Current Topics in Microbiology and Immunology, 2018, , 29-54.	0.7	1
27	Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Scientific Reports, 2017, 7, 42179.	1.6	44
28	Gingival Tissue Inflammation Promotes Increased Matrix Metalloproteinase-12 Production by CD200Rlow Monocyte-Derived Cells in Periodontitis. Journal of Immunology, 2017, 199, 4023-4035.	0.4	23
29	Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69 â° CD56 dim cells. Journal of Allergy and Clinical Immunology, 2017, 139, 1321-1330.e4.	1.5	113
30	Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse. PLoS Pathogens, 2016, 12, e1005732.	2.1	32
31	In vivo engineering of mobilized stem cell grafts with the immunomodulatory drug FTY720 for allogeneic transplantation. European Journal of Immunology, 2016, 46, 1758-1769.	1.6	2
32	A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Scientific Reports, 2016, 6, 31360.	1.6	32
33	Adsorptive depletion of blood monocytes reduces the levels of circulating interleukin-17A in Langerhans cell histiocytosis. Blood, 2016, 128, 1302-1305.	0.6	11
34	Tissue-infiltrating neutrophils represent the main source of IL-23 in the colon of patients with IBD. Gut, 2016, 65, 1632-1641.	6.1	87
35	Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight, 2016, 1, e87882.	2.3	61
36	Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A. PLoS ONE, 2016, 11, e0149354.	1.1	20

#	Article	IF	CITATIONS
37	Modeling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. DMM Disease Models and Mechanisms, 2015, 8, 1413-25.	1.2	47
38	Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Scientific Reports, 2015, 5, 16945.	1.6	36
39	A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection. Journal of Visualized Experiments, 2015, , .	0.2	27
40	Modulatory effects on dendritic cells by human herpesvirus 6. Frontiers in Microbiology, 2015, 6, 388.	1.5	6
41	Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clinical Immunology, 2015, 156, 85-97.	1.4	51
42	Modeling <i>Mycobacterium tuberculosis</i> early granuloma formation in experimental human lung tissue. DMM Disease Models and Mechanisms, 2014, 7, 281-8.	1,2	53
43	Levels of Alpha-Toxin Correlate with Distinct Phenotypic Response Profiles of Blood Mononuclear Cells and with agr Background of Community-Associated Staphylococcus aureus Isolates. PLoS ONE, 2014, 9, e106107.	1.1	20
44	Technical Advance: Live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung. Journal of Leukocyte Biology, 2014, 96, 481-489.	1.5	13
45	Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clinical Immunology, 2014, 151, 84-99.	1.4	63
46	Detection of IL-17A-producing peripheral blood monocytes in Langerhans cell histiocytosis patients. Clinical Immunology, 2014, 153, 112-122.	1.4	24
47	Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L226-L237.	1.3	50
48	Dendritic Cell Regulation by Cannabinoid-Based Drugs. Pharmaceuticals, 2010, 3, 2733-2750.	1.7	12
49	Stromal Cell-Derived CXCL12 and CCL8 Cooperate To Support Increased Development of Regulatory Dendritic Cells FollowingLeishmaniaInfection. Journal of Immunology, 2010, 185, 2360-2371.	0.4	25
50	Compartmentalization of Immune Responses in Human Tuberculosis. American Journal of Pathology, 2009, 174, 2211-2224.	1.9	99
51	Isolation and Culture of Human Hematopoietic Progenitors for Studies of Dendritic Cell Biology. Methods in Molecular Biology, 2009, 531, 187-202.	0.4	3
52	Cannabinoids Affect Dendritic Cell (DC) Potassium Channel Function and Modulate DC T Cell Stimulatory Capacity. Journal of Immunology, 2008, 181, 3057-3066.	0.4	28
53	Stromal-cell regulation of dendritic-cell differentiation and function. Trends in Immunology, 2006, 27, 580-587.	2.9	53
54	Stromal Cells Direct Local Differentiation of Regulatory Dendritic Cells. Immunity, 2004, 21, 805-816.	6.6	170