
Chaoliang Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chinese Chemical Letters, 2022, 33, 163-176.	9.0	63
2	Synthesis of Pd ₃ Sn and PdCuSn Nanorods with <i>L1₂</i> Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. Advanced Materials, 2022, 34, e2106115.	21.0	65
3	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumorâ€5pecific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	109
4	Intercalationâ€Activated Layered MoO ₃ Nanobelts as Biodegradable Nanozymes for Tumor‧pecific Photoâ€Enhanced Catalytic Therapy. Angewandte Chemie, 2022, 134, .	2.0	16
5	Metallic phase enabling MoS2 nanosheets as an efficient sonosensitizer for photothermal-enhanced sonodynamic antibacterial therapy. Journal of Nanobiotechnology, 2022, 20, 136.	9.1	38
6	A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chemical Engineering Journal, 2022, 438, 135588.	12.7	86
7	Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 2022, 32, .	14.9	86
8	Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. Nano-Micro Letters, 2022, 14, 109.	27.0	31
9	Preparation of Dye Moleculeâ€Intercalated MoO ₃ Organic/Inorganic Superlattice Nanoparticles for Fluorescence Imagingâ€Guided Catalytic Therapy. Small, 2022, 18, .	10.0	18
10	Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nature Communications, 2022, 13, .	12.8	95
11	Growth of Cu ₂ O Nanoparticles on Two-Dimensional Zr–Ferrocene–Metal–Organic Framework Nanosheets for Photothermally Enhanced Chemodynamic Antibacterial Therapy. Inorganic Chemistry, 2022, 61, 9328-9338.	4.0	55
12	Ternary NiCoTi-layered double hydroxide nanosheets as a pH-responsive nanoagent for photodynamic/chemodynamic synergistic therapy. Fundamental Research, 2022, , .	3.3	3
13	Layered double hydroxide-based nanomaterials for biomedical applications. Chemical Society Reviews, 2022, 51, 6126-6176.	38.1	133
14	Edgeâ€Enriched Mo ₂ TiC ₂ T _x /MoS ₂ Heterostructure with Coupling Interface for Selective NO ₂ Monitoring. Advanced Functional Materials, 2022, 32, .	14.9	58
15	Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for Direct Indole Synthesis. Advanced Materials, 2021, 33, e2006711.	21.0	68
16	Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. Journal of Materials Chemistry A, 2021, 9, 18887-18905.	10.3	47
17	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.	10.0	94
18	High‥ield Exfoliation of Ultrathin 2D Ni ₃ Cr ₂ P ₂ S ₉ and Ni ₃ Cr ₂ P ₂ Se ₉ Nanosheets. Small, 2021, 17, e2006866.	10.0	8

#	Article	IF	CITATIONS
19	Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews, 2021, 121, 5830-5888.	47.7	57
20	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	27.5	119
21	Ultrathin 2D Copper(I) 1,2,4â€Triazolate Coordination Polymer Nanosheets for Efficient and Selective Gene Silencing and Photodynamic Therapy. Advanced Materials, 2021, 33, e2100849.	21.0	38
22	A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO _{2–<i>x</i>} Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS Nano, 2021, 15, 10597-10608.	14.6	109
23	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie - International Edition, 2021, 60, 15556-15562.	13.8	13
24	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie, 2021, 133, 15684-15690.	2.0	0
25	Selfâ€Assembly of 2D Nanosheets into 1D Nanostructures for Sensing NO 2. Small Structures, 2021, 2, 2100067.	12.0	8
26	Nanodots Derived from Layered Materials: Synthesis and Applications. Advanced Materials, 2021, 33, e2006661.	21.0	29
27	Graphene-based mid-infrared photodetectors using metamaterials and related concepts. Applied Physics Reviews, 2021, 8, .	11.3	20
28	Two-dimensional metallic MoS2-amorphous CoNi(OH)2 nanocomposite for enhanced electrochemical water splitting in alkaline solutions. Applied Surface Science, 2021, 561, 150079.	6.1	18
29	Ultrathin CuFe2S3 nanosheets derived from CuFe-layered double hydroxide as an efficient nanoagent for synergistic chemodynamic and NIR-II photothermal therapy. Chemical Engineering Journal, 2021, 419, 129458.	12.7	45
30	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	4.9	269
31	35 challenges in materials science being tackled by PIs under 35(ish) in 2021. Matter, 2021, 4, 3804-3810.	10.0	1
32	Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nature Nanotechnology, 2020, 15, 53-58.	31.5	153
33	Centimeterâ€5cale and Visible Wavelength Monolayer Lightâ€Emitting Devices. Advanced Functional Materials, 2020, 30, 1907941.	14.9	20
34	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	13.7	111
35	Metallic 1T Phase Enabling MoS ₂ Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Nearâ€Infraredâ€I Window. Small, 2020, 16, e2004173.	10.0	150
36	Evaporated Se <i>_x</i> Te _{1â€} <i>_x</i> Thin Films with Tunable Bandgaps for Shortâ€Wave Infrared Photodetectors. Advanced Materials, 2020, 32, e2001329.	21.0	49

#	Article	IF	CITATIONS
37	A universal method for rapid and largeâ€scale growth of layered crystals. SmartMat, 2020, 1, e1011.	10.7	33
38	Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Research, 2020, 13, 1970-1975.	10.4	32
39	Two-Dimensional Nanomaterials with Unconventional Phases. CheM, 2020, 6, 1237-1253.	11.7	93
40	<i>In-Situ</i> Probing of Crystal-Phase-Dependent Photocatalytic Activities of Au Nanostructures by Surface-Enhanced Raman Spectroscopy. , 2020, 2, 409-414.		22
41	Ag@MoS ₂ Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS ₂ . Journal of the American Chemical Society, 2020, 142, 7161-7167.	13.7	185
42	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.	4.1	28
43	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	30.2	438
44	Preparation of hierarchical hollow structures assembled from porous NiCo 2 O 4 nanosheets for diesel soot elimination. EcoMat, 2020, 2, e12041.	11.9	2
45	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	13.7	85
46	Synthesis of Palladiumâ€Based Crystalline@Amorphous Core–Shell Nanoplates for Highly Efficient Ethanol Oxidation. Advanced Materials, 2020, 32, e2000482.	21.0	98
47	Selective Epitaxial Growth of Oriented Hierarchical Metal–Organic Framework Heterostructures. Journal of the American Chemical Society, 2020, 142, 8953-8961.	13.7	100
48	A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Science China Materials, 2019, 62, 115-121.	6.3	16
49	Quest for p-Type Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 12294-12300.	14.6	72
50	Optical and electrical properties of two-dimensional palladium diselenide. Applied Physics Letters, 2019, 114, .	3.3	74
51	Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection Using Ultrathin Ternary Chalcogenide Nanosheets. Frontiers in Chemistry, 2019, 7, 844.	3.6	2
52	A General Method for the Synthesis of Hybrid Nanostructures Using MoSe ₂ Nanosheet-Assembled Nanospheres as Templates. Research, 2019, 2019, 6439734.	5.7	7
53	Epitaxial growth of hybrid nanostructures. Nature Reviews Materials, 2018, 3, .	48.7	318
54	Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials. ACS Applied Materials & Interfaces, 2018, 10, 2174-2184.	8.0	43

#	Article	IF	CITATIONS
55	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	21.0	341
56	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	2.0	37
57	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	13.8	398
58	Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials. Advanced Materials, 2018, 30, 1705454.	21.0	318
59	Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.	34.4	247
60	Preparation of 1T′-Phase ReS _{2<i>x</i>} Se _{2(1-<i>x</i>)} (<i>x</i> = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568.	13.7	104
61	Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano, 2018, 12, 7253-7263.	14.6	298
62	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. Small, 2017, 13, 1604139.	10.0	83
63	Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews, 2017, 46, 2660-2677.	38.1	866
64	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â~`<i>x</i>} S _{<i>y</i>} O _{<i>z</i>} Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie - International Edition, 2017, 56, 7842-7846.	13.8	59
65	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â°`<i>x</i>} S _{<i>y</i>} O _{<i>z</i>} Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie, 2017, 129, 7950-7954.	2.0	11
66	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	21.0	384
67	Recent Advances in Cantilever-Free Scanning Probe Lithography: High-Throughput, Space-Confined Synthesis of Nanostructures and Beyond. ACS Nano, 2017, 11, 4381-4386.	14.6	21
68	Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. Journal of the American Chemical Society, 2017, 139, 8698-8704.	13.7	440
69	Ultrathin Twoâ€Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie - International Edition, 2017, 56, 4252-4255.	13.8	206
70	Ultrathin Twoâ€Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie, 2017, 129, 4316-4319.	2.0	21
71	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
72	A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Letters, 2017, 17, 156-163.	9.1	138

#	Article	IF	CITATIONS
73	Ultrathin Twoâ€Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 2017, 29, 1701392.	21.0	242
74	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	2.0	7
75	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21
76	Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Science China Materials, 2017, 60, 1102-1108.	6.3	27
77	Single‣ayer Ternary Chalcogenide Nanosheet as a Fluorescenceâ€Based "Captureâ€Release―Biomolecular Nanosensor. Small, 2017, 13, 1601925.	10.0	29
78	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	5.9	173
79	Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures. CheM, 2016, 1, 59-77.	11.7	92
80	Lösungsprozessierte MoS ₂ â€Nanoplätchen: Herstellung, Hybridisierung und Anwendungen. Angewandte Chemie, 2016, 128, 8960-8984.	2.0	52
81	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> Sub>Sub>Mo <i>_x</i> Sub>xW _{1â€} <i>_x22Nanosheets with Highâ€Concentration Metallic 1T Phase, Small, 2016, 12, 1866-1874,</i>	10.0	126
82	Solutionâ€Processed Twoâ€Dimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	13.8	557
83	Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155.	21.0	440
84	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	13.7	591
85	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	10.0	65
86	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	21.0	336
87	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	10.0	101
88	Selfâ€Assembly of Single‣ayer CoAl‣ayered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645.	21.0	355
89	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	21.0	438
90	Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials. Chemical Communications, 2016, 52, 1555-1562.	4.1	56

#	Article	IF	CITATIONS
91	Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nature Chemistry, 2016, 8, 470-475.	13.6	177

$_{92}$ Carbon: Carbonâ \in Based Sorbents with Threeâ \in Dimensional Architectures for Water Remediation (Small) Tj ETQq0 0.0 rgBT / Overlock 1

93	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	5.6	134
94	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	13.7	123
95	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	13.8	594
96	AuAg Nanosheets Assembled from Ultrathin AuAg Nanowires. Journal of the American Chemical Society, 2015, 137, 1444-1447.	13.7	68
97	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	13.8	185
98	High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. Journal of the American Chemical Society, 2015, 137, 10430-10436.	13.7	214
99	Sensors: DNA-Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection (Small) Tj ETQq1 1 0.784	1314 rgBT 10.0	/Qverlock
100	Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chemical Society Reviews, 2015, 44, 2615-2628.	38.1	302
101	Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	10.0	166
102	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	12.8	526
103	Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2015, 137, 12162-12174.	13.7	218
104	Ordered Porous Pd Octahedra Covered with Monolayer Ru Atoms. Journal of the American Chemical Society, 2015, 137, 14566-14569.	13.7	59
105	Liquidâ€Phase Epitaxial Growth of Twoâ€Dimensional Semiconductor Heteroâ€nanostructures. Angewandte Chemie - International Edition, 2015, 54, 1841-1845.	13.8	88
106	Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 2015, 44, 2681-2701.	38.1	786
107	DNAâ€Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection. Small, 2015, 11, 1385-1389.	10.0	106
108	Single‣ayer Transition Metal Dichalcogenide Nanosheetâ€Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Advanced Materials, 2015, 27, 935-939.	21.0	322

#	Article	IF	CITATIONS
109	Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8, 40-55.	10.4	97
110	Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44, 2713-2731.	38.1	1,405
111	Thin metal nanostructures: synthesis, properties and applications. Chemical Science, 2015, 6, 95-111.	7.4	198
112	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials, 2014, 26, 1735-1739.	21.0	77
113	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	19.5	398
114	Electrochemically "Writing―Graphene from Graphene Oxide. Small, 2014, 10, 3555-3559.	10.0	27
115	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	21.0	579
116	Soft Matter Anion Sensing Based on Lanthanide (Eu3+and TB3+) Luminescent Hydrogels. Soft Materials, 2014, 12, 98-102.	1.7	10
117	Carbon Microbelt Aerogel Prepared by Waste Paper: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. Small, 2014, 10, 3544-3550.	10.0	196
118	Ultrathin S-doped MoSe ₂ nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 5597-5601.	10.3	317
119	Growth of noble metal nanoparticles on single-layer TiS ₂ and TaS ₂ nanosheets for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 797-803.	30.8	323
120	Triangular Ag–Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction. Nanoscale, 2014, 6, 11738-11743.	5.6	43
121	Coating Two-Dimensional Nanomaterials with Metal–Organic Frameworks. ACS Nano, 2014, 8, 8695-8701.	14.6	168
122	A Universal Method for Preparation of Noble Metal Nanoparticleâ€Đecorated Transition Metal Dichalcogenide Nanobelts. Advanced Materials, 2014, 26, 6250-6254.	21.0	71
123	Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale, 2014, 6, 12340-12344.	5.6	82
124	Novel pH Induced Reversible Luminescent Lanthanide Hydrogels. Journal of Cluster Science, 2013, 24, 449-458.	3.3	7
125	Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy and Environmental Science, 2013, 6, 2921.	30.8	939
126	Carbon Fiber Aerogel Made from Raw Cotton: A Novel, Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Materials, 2013, 25, 5916-5921.	21.0	600

#	Article	IF	CITATIONS
127	Electrochemical signal response for vitamin B1 using terbium luminescent nanoscale building blocks as optical sensors. Sensors and Actuators B: Chemical, 2013, 188, 1176-1182.	7.8	20
128	Synthesis of graphene–conjugated polymer nanocomposites for electronic device applications. Nanoscale, 2013, 5, 1440.	5.6	80
129	Synthesis and applications of graphene-based noble metal nanostructures. Materials Today, 2013, 16, 29-36.	14.2	257
130	Grapheneâ€Based Electrochemical Sensors. Small, 2013, 9, 1160-1172.	10.0	526
131	From molecule to complex: Design of smart fluorescent anion-sensors. Optical Materials, 2013, 35, 1157-1161.	3.6	5
132	Luminescent Cu2+ Probes Based on Rare-Earth (Eu3+ and Tb3+) Emissive Transparent Cellulose Hydrogels. Journal of Fluorescence, 2012, 22, 1581-1586.	2.5	21
133	Two novel europium (III) centered anion receptors and their naked eye detections. Synthetic Metals, 2012, 162, 1416-1420.	3.9	8
134	A targetable fluorescent sensor for hypochlorite based on a luminescent europium complex loaded carbon nanotube. Analyst, The, 2012, 137, 1872.	3.5	30
135	Selective signaling of fluoride anion based on imidazole moieties. Luminescence, 2012, 27, 302-306.	2.9	6
136	A luminescent lanthanide complex-based anion sensor with electron-donating methoxy groups for monitoring multiple anions in environmental and biological processes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 387-394.	3.9	38
137	Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes. Chemical Communications, 2011, 47, 12521.	4.1	109
138	Terbium hybrid particles with spherical shape as luminescent probe for detection of Cu2+ and Fe3+ in water. Analytica Chimica Acta, 2011, 708, 111-115.	5.4	41
139	Reversible Terbium Luminescent Polyelectrolyte Hydrogels for Detection of H2PO4â^'and HSO4â^'in Water. Inorganic Chemistry, 2011, 50, 2953-2956.	4.0	64
140	Anion Responsive Dibenzoylâ€ <scp>l</scp> â€Cystine and Luminescent Lanthanide Soft Material. Photochemistry and Photobiology, 2011, 87, 641-645.	2.5	5
141	Anion/Cation Induced Optical Switches Based on Luminescent Lanthanide (Tb ³⁺ and) Tj ETQq1 1 ().784314 ı 2.5	gBT_/Overlo
142	2-(3-Pyridyl)imidazole-4,5-dicarboxylic acid based lanthanide luminescent anion sensor. Solid State Sciences, 2011, 13, 1687-1691.	3.2	17
143	Recognition of H2PO 4 - and Cu2+ in Water by Luminescent Terbium Silica Xerogel. Journal of Fluorescence, 2011, 21, 1117-1122.	2.5	13
144	Photophysical studies of novel lanthanide (Eu3+ and Tb3+) luminescent hydrogels. Inorganic Chemistry Communication, 2011, 14, 515-518.	3.9	16

#	Article	IF	CITATIONS
145	Eu3+ chelate with phenanthroline derivative gives selective emission responses to Cu(II) ions. Journal of Organometallic Chemistry, 2011, 696, 829-831.	1.8	18
146	Optical Properties of Two Novel Terbium Thermo-Sensitive Poly(<i>N-Isopropylacrylamide</i>) Gels. Advanced Materials Research, 2011, 399-401, 886-889.	0.3	0
147	Anion/Cation (H2PO4â^' and Fe3+) induced dual luminescence quenching effect based on terbium solid sensor. Journal of Rare Earths, 2010, 28, 888-892.	4.8	6
148	Fluorescentâ€based Solid Sensor for HSO ₄ ^{â^'} in Water. Photochemistry and Photobiology, 2010, 86, 1191-1196.	2.5	33
149	Emission response towards three anions (Fâ^', HSO4â^' and AcOâ^') by a luminescent europium ternary complex with a 2-arylimidazole-1,10-phenanthroline conjugate. Photochemical and Photobiological Sciences, 2010, 9, 791-795.	2.9	36
150	A New Fluoride Luminescence Quencher Based on a Nanostructured Covalently Bonded Terbium Hybrid Material. Journal of Physical Chemistry C, 2010, 114, 13879-13883.	3.1	61
151	Luminescence recognition behavior concerning different anions by lanthanide complex equipped with electron-withdraw groups and in PMMA matrix. Synthetic Metals, 2010, 160, 1780-1786.	3.9	16
152	Simultaneously enhancing moisture and mechanical stability of flexible perovskite solar cells via a polyimide interfacial layer. , 0, , .		3