
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992528/publications.pdf Version: 2024-02-01

MENCLU

#	Article	IF	CITATIONS
1	Optimal impulsive harvesting strategy of a stochastic Gompertz model in periodic environments. Applied Mathematics Letters, 2022, 125, 107733.	2.7	11
2	Optimal Harvesting of Stochastic Population Models with Periodic Coefficients. Journal of Nonlinear Science, 2022, 32, 1.	2.1	15
3	Dynamical bifurcation and explicit stationary density of a stochastic population model with Allee effects. Applied Mathematics Letters, 2021, 111, 106662.	2.7	18
4	Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching. Chaos, Solitons and Fractals, 2021, 142, 110462.	5.1	26
5	Long-time behaviors of two stochastic mussel-algae models. Mathematical Biosciences and Engineering, 2021, 18, 8392-8414.	1.9	7
6	Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Applied Mathematical Modelling, 2020, 78, 482-504.	4.2	40
7	Stationary distribution of a stochastic hybrid phytoplankton–zooplankton model with toxin-producing phytoplankton. Applied Mathematics Letters, 2020, 101, 106077.	2.7	33
8	Analysis of a stochastic hybrid population model with Allee effect. Applied Mathematics and Computation, 2020, 364, 124582.	2.2	32
9	Dynamics of a nutrient-phytoplankton model with random phytoplankton mortality. Journal of Theoretical Biology, 2020, 488, 110119.	1.7	12
10	Invariant measure of a stochastic food-limited population model with regime switching. Mathematics and Computers in Simulation, 2020, 178, 16-26.	4.4	13
11	Optimal harvesting of a stochastic mutualism model with regime-switching. Applied Mathematics and Computation, 2020, 373, 125040.	2.2	27
12	Persistence and extinction of a stochastic predator–prey model with modified Leslie–Gower and Holling-type II schemes. Advances in Difference Equations, 2020, 2020, .	3.5	8
13	Dynamics of a stochastic population model with Allee effects under regime switching. Advances in Difference Equations, 2020, 2020, .	3.5	1
14	Survival analysis of a stochastic service–resource mutualism model in a polluted environment with pulse toxicant input. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 591-606.	2.6	6
15	Optimal harvesting of a stochastic commensalism model with time delay. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121284.	2.6	13
16	Permanence and extinction of a stochastic hybrid model for tumor growth. Applied Mathematics Letters, 2019, 94, 66-72.	2.7	34
17	Dynamics of a stochastic regime-switching predator–prey model with modified Leslie–Gower Holling-type II schemes and prey harvesting. Nonlinear Dynamics, 2019, 96, 417-442.	5.2	58
18	Persistence and extinction of a modified Leslie–Gower Holling-type II stochastic predator–prey model with impulsive toxicant input in polluted environments. Nonlinear Analysis: Hybrid Systems, 2018, 27, 177-190.	3.5	56

#	Article	IF	CITATIONS
19	Persistence and extinction of an n-species mutualism model with random perturbations in a polluted environment. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 313-324.	2.6	5
20	Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays. Nonlinear Analysis: Hybrid Systems, 2018, 28, 87-104.	3.5	80
21	Stability of a budworm growth model with random perturbations. Applied Mathematics Letters, 2018, 79, 13-19.	2.7	33
22	Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps. Nonlinear Analysis: Hybrid Systems, 2018, 30, 225-239.	3.5	60
23	Dynamics of a stochastic delay competitive model with harvesting and Markovian switching. Applied Mathematics and Computation, 2018, 337, 335-349.	2.2	36
24	Permanence and extinction in a stochastic service–resource mutualism model. Applied Mathematics Letters, 2017, 69, 1-7.	2.7	14
25	Stability of a stochastic one-predator-two-prey population model with time delays. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 65-82.	3.3	41
26	Permanence of Stochastic Lotka–Volterra Systems. Journal of Nonlinear Science, 2017, 27, 425-452.	2.1	95
27	Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 14-28.	2.6	47
28	ANALYSIS OF A STOCHASTIC TWO-PREDATORS ONE-PREY SYSTEM WITH MODIFIED LESLIE-GOWER AND HOLLING-TYPE â; SCHEMES. Journal of Applied Analysis and Computation, 2017, 7, 713-727.	0.5	5
29	Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete and Continuous Dynamical Systems, 2017, 37, 2513-2538.	0.9	51
30	Optimal harvesting of a stochastic delay competitive model. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1493-1508.	0.9	15
31	Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations. Applied Mathematical Modelling, 2016, 40, 5510-5531.	4.2	17
32	Analysis of a stochastic tri-trophic food-chain model with harvesting. Journal of Mathematical Biology, 2016, 73, 597-625.	1.9	115
33	Dynamics of a stochastic one-prey two-predator model with Lévy jumps. Applied Mathematics and Computation, 2016, 284, 308-321.	2.2	41
34	Global asymptotic stability of stochastic competitive system with infinite delays. Journal of Applied Mathematics and Computing, 2016, 50, 93-107.	2.5	2
35	Analysis of stochastic two-prey one-predator model with Lévy jumps. Physica A: Statistical Mechanics and Its Applications, 2016, 445, 176-188.	2.6	28
36	Optimal harvesting of a stochastic mutualism model with Lévy jumps. Applied Mathematics and Computation, 2016, 276, 301-309.	2.2	46

#	Article	IF	CITATIONS
37	Survival analysis of a stochastic single-species population model with jumps in a polluted environment. International Journal of Biomathematics, 2016, 09, 1650011.	2.9	10
38	A remark on a stochastic logistic model with Lévy jumps. Applied Mathematics and Computation, 2015, 251, 521-526.	2.2	6
39	Stability of a stochastic logistic model under regime switching. Advances in Difference Equations, 2015, 2015, .	3.5	4
40	Global asymptotic stability of stochastic Lotka–Volterra systems with infinite delays. IMA Journal of Applied Mathematics, 2015, 80, 1431-1453.	1.6	14
41	Analysis of a stochastic logistic model with diffusion. Applied Mathematics and Computation, 2015, 266, 169-182.	2.2	19
42	Optimal Harvesting of a Stochastic Logistic Model with Time Delay. Journal of Nonlinear Science, 2015, 25, 277-289.	2.1	53
43	Survival analysis of a cooperation system with random perturbations in a polluted environment. Nonlinear Analysis: Hybrid Systems, 2015, 18, 100-116.	3.5	10
44	Dynamical behavior of a one-prey two-predator model with random perturbations. Communications in Nonlinear Science and Numerical Simulation, 2015, 28, 123-137.	3.3	37
45	The Evolutionary Dynamics of Stochastic Epidemic Model with Nonlinear Incidence Rate. Bulletin of Mathematical Biology, 2015, 77, 1705-1743.	1.9	97
46	Dynamics of a stochastic Holling II one-predator two-prey system with jumps. Physica A: Statistical Mechanics and Its Applications, 2015, 421, 571-582.	2.6	44
47	Optimal harvesting policy of a stochastic predator–prey model with time delay. Applied Mathematics Letters, 2015, 48, 102-108.	2.7	43
48	Persistence and extinction of a stochastic cooperative model in a polluted environment with pulse toxicant input. Filomat, 2015, 29, 1329-1342.	0.5	5
49	Dynamics of a Stochastic Delayed Competitive Model with Impulsive Toxicant Input in Polluted Environments. Abstract and Applied Analysis, 2014, 2014, 1-8.	0.7	0
50	Optimal harvesting policy for a stochastic predator–prey model. Applied Mathematics Letters, 2014, 34, 22-26.	2.7	24
51	A remark on stochastic Logistic model with diffusion. Applied Mathematics and Computation, 2014, 228, 141-146.	2.2	9
52	Dynamics of a stochastic Lotka-Volterra model with regime switching. Journal of Applied Mathematics and Computing, 2014, 45, 327-349.	2.5	2
53	Global asymptotic stability of a stochastic delayed predator–prey model with Beddington–DeAngelis functional response. Applied Mathematics and Computation, 2014, 226, 581-588.	2.2	15
54	Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 3444-3453.	3.3	39

#	Article	IF	CITATIONS
55	Can protection zone potentially strengthen protective effects in random environments?. Applied Mathematics and Computation, 2014, 231, 26-38.	2.2	3
56	Optimal harvesting policy of a stochastic food chain population model. Applied Mathematics and Computation, 2014, 245, 265-270.	2.2	16
57	On a stochastic delayed predator–prey model with Lévy jumps. Applied Mathematics and Computation, 2014, 228, 563-570.	2.2	20
58	Stochastic Lotka–Volterra systems with Lévy noise. Journal of Mathematical Analysis and Applications, 2014, 410, 750-763.	1.0	140
59	Stochastic Lotka-Volterra systems under regime switching with jumps. Filomat, 2014, 28, 1907-1928.	O.5	4
60	Stability analysis of a stochastic logistic model with infinite delay. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 2289-2294.	3.3	9
61	Dynamics of a non-autonomous stochastic Gilpin-Ayala model. Journal of Applied Mathematics and Computing, 2013, 43, 351-368.	2.5	1
62	The threshold between permanence and extinction for a stochastic Logistic model with regime switching. Journal of Applied Mathematics and Computing, 2013, 43, 329-349.	2.5	6
63	Dynamics of a Two-Prey One-Predator System in Random Environments. Journal of Nonlinear Science, 2013, 23, 751-775.	2.1	84
64	Analysis of a stochastic autonomous mutualism model. Journal of Mathematical Analysis and Applications, 2013, 402, 392-403.	1.0	60
65	Dynamics of a Leslie–Gower Holling-type II predator–prey system with Lévy jumps. Nonlinear Analysis: Theory, Methods & Applications, 2013, 85, 204-213.	1.1	114
66	Dynamics and simulations of a logistic model with impulsive perturbations in a random environment. Mathematics and Computers in Simulation, 2013, 92, 53-75.	4.4	17
67	A note on a delay Lotka–Volterra competitive system with random perturbations. Applied Mathematics Letters, 2013, 26, 589-594.	2.7	19
68	A note on stability of stochastic logistic equation. Applied Mathematics Letters, 2013, 26, 601-606.	2.7	24
69	Stability of a stochastic logistic model with distributed delay. Mathematical and Computer Modelling, 2013, 57, 1112-1121.	2.0	22
70	Persistence and extinction of a stochastic delay Logistic equation under regime switching. Applied Mathematics Letters, 2013, 26, 140-144.	2.7	21
71	A remark on a stochastic predator–prey system with time delays. Applied Mathematics Letters, 2013, 26, 318-323.	2.7	40
72	Asymptotic behavior of a stochastic nonautonomous Lotka–Volterra competitive system with impulsive perturbations. Mathematical and Computer Modelling, 2013, 57, 909-925.	2.0	36

#	Article	IF	CITATIONS
73	Analysis of Stochastic Delay Predator-Prey System with Impulsive Toxicant Input in Polluted Environments. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.7	1
74	Stochastic Differential Equations with Multi-Markovian Switching. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	0
75	Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete and Continuous Dynamical Systems, 2013, 33, 2495-2522.	0.9	61
76	A Generalization of Itùs Formula and the Stability of Stochastic Volterra Integral Equations. Journal of Applied Mathematics, 2012, 2012, 1-16.	0.9	3
77	DYNAMICAL PROPERTIES OF A STOCHASTIC TWO-SPECIES SCHOENER'S COMPETITIVE MODEL. International Journal of Biomathematics, 2012, 05, 1250035.	2.9	4
78	Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input. Chaos, Solitons and Fractals, 2012, 45, 1541-1550.	5.1	27
79	Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system. Applied Mathematics Letters, 2012, 25, 1980-1985.	2.7	52
80	Persistence, extinction and global asymptotical stability of a non-autonomous predator–prey model with random perturbation. Applied Mathematical Modelling, 2012, 36, 5344-5353.	4.2	57
81	Dynamics of a stochastic predator–prey system with Beddington–DeAngelis functional response. Applied Mathematics and Computation, 2012, 219, 2303-2312.	2.2	30
82	Stochastic logistic equation with infinite delay. Mathematical Methods in the Applied Sciences, 2012, 35, 812-827.	2.3	14
83	On a stochastic logistic equation with impulsive perturbations. Computers and Mathematics With Applications, 2012, 63, 871-886.	2.7	75
84	Analysis of an improved epidemic model with stochastic disease transmission. Applied Mathematics and Computation, 2012, 218, 9750-9758.	2.2	4
85	The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations. Applied Mathematics and Computation, 2012, 218, 10520-10532.	2.2	9
86	Global asymptotic stability of a stochastic Lotka–Volterra model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3115-3123.	3.3	34
87	Asymptotic properties and simulations of a stochastic logistic model under regime switching II. Mathematical and Computer Modelling, 2012, 55, 405-418.	2.0	35
88	Persistence and extinction of a non-autonomous logistic model with random perturbations. Communications in Mathematical Sciences, 2012, 10, 977-987.	1.0	2
89	Asymptotic properties and simulations of a stochastic logistic model under regime switching. Mathematical and Computer Modelling, 2011, 54, 2139-2154.	2.0	42
90	Global stability of stage-structured predator–prey models with Beddington–DeAngelis functional response. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3792-3797.	3.3	40

#	Article	IF	CITATIONS
91	Survival Analysis of Stochastic Competitive Models in a Polluted Environment and Stochastic Competitive Exclusion Principle. Bulletin of Mathematical Biology, 2011, 73, 1969-2012.	1.9	214
92	Clobal stability of a nonlinear stochastic predator–prey system with Beddington–DeAngelis functional response. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1114-1121.	3.3	77
93	Long term behaviors of stochastic single-species growth models in a polluted environment. Applied Mathematical Modelling, 2011, 35, 752-762.	4.2	22
94	Long term behaviors of stochastic single-species growth models in a polluted environment II. Applied Mathematical Modelling, 2011, 35, 4438-4448.	4.2	9
95	Persistence and extinction in stochastic non-autonomous logistic systems. Journal of Mathematical Analysis and Applications, 2011, 375, 443-457.	1.0	143
96	SURVIVAL ANALYSIS OF A STOCHASTIC COOPERATION SYSTEM IN A POLLUTED ENVIRONMENT. Journal of Biological Systems, 2011, 19, 183-204.	1.4	49
97	Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment. Journal of Theoretical Biology, 2010, 264, 934-944.	1.7	73
98	Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment II. Journal of Theoretical Biology, 2010, 267, 283-291.	1.7	25
99	Extinction and permanence in a stochastic non-autonomous population system. Applied Mathematics Letters, 2010, 23, 1464-1467.	2.7	22
100	Survival analysis of stochastic single-species population models in polluted environments. Ecological Modelling, 2009, 220, 1347-1357.	2.5	65