
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992294/publications.pdf Version: 2024-02-01

ΡΛΙΕΚΔ1/4ΗΝ

#	Article	IF	CITATIONS
1	Genome engineering in rodents – status quo and perspectives. Laboratory Animals, 2022, 56, 83-87.	0.5	2
2	Generation of a NES-mScarlet Red Fluorescent Reporter Human iPSC Line for Live Cell Imaging and Flow Cytometric Analysis and Sorting Using CRISPR-Cas9-Mediated Gene Editing. Cells, 2022, 11, 268.	1.8	2
3	Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E85-E100.	1.8	14
4	A deletion containing a CTCF-element in intron 8 of the Bbs7 gene is partially responsible for juvenile obesity in the Berlin Fat Mouse. Mammalian Genome, 2022, 33, 465-470.	1.0	4
5	Precise CRISPR-Cas–mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells. Science Advances, 2022, 8, .	4.7	18
6	Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nature Communications, 2022, 13, .	5.8	15
7	A RAS-independent biomarker panel pedicts response to MEK-inhibitors in colorectal cancer Journal of Clinical Oncology, 2022, 40, e15524-e15524.	0.8	Ο
8	In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation. Nature Genetics, 2022, 54, 1026-1036.	9.4	34
9	A RAS-Independent Biomarker Panel to Reliably Predict Response to MEK Inhibition in Colorectal Cancer. Cancers, 2022, 14, 3252.	1.7	1
10	A homology independent sequence replacement strategy in human cells using a CRISPR nuclease. Open Biology, 2021, 11, 200283.	1.5	11
11	Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nature Communications, 2021, 12, 1929.	5.8	55
12	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	9.4	60
13	Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight, 2021, 6, .	2.3	17
14	Microglia sense neuronal activity via GABA in the early postnatal hippocampus. Cell Reports, 2021, 37, 110128.	2.9	30
15	CRISPR-Cas9-Mediated ELANE Mutation Correction in Hematopoietic Stem and Progenitor Cells to Treat Severe Congenital Neutropenia. Molecular Therapy, 2020, 28, 2621-2634.	3.7	28
16	Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. BMC Biotechnology, 2020, 20, 57.	1.7	7
17	Efficient and Precise CRISPR/Cas9-Mediated MECP2 Modifications in Human-Induced Pluripotent Stem Cells. Frontiers in Genetics, 2019, 10, 625.	1.1	23
18	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature Neuroscience, 2019, 22, 1731-1742.	7.1	181

#	Article	IF	CITATIONS
19	Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells. Cell Reports, 2019, 28, 3510-3522.e5.	2.9	19
20	Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9. Methods in Molecular Biology, 2019, 1961, 137-151.	0.4	14
21	Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes and Development, 2019, 33, 524-535.	2.7	60
22	The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Scientific Reports, 2019, 9, 4515.	1.6	22
23	Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors. Frontiers in Genetics, 2019, 10, 365.	1.1	56
24	Chronic CD30 signaling in B cells results in lymphomagenesis by driving the expansion of plasmablasts and B1 cells. Blood, 2019, 133, 2597-2609.	0.6	14
25	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	5.8	59
26	Regulation of the Natriuretic Peptide Receptor 2 (Npr2) by Phosphorylation of Juxtamembrane Serine and Threonine Residues Is Essential for Bifurcation of Sensory Axons. Journal of Neuroscience, 2018, 38, 9768-9780.	1.7	14
27	Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell, 2018, 175, 239-253.e17.	13.5	97
28	Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods, 2017, 121-122, 55-67.	1.9	49
29	Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells. Journal of Biotechnology, 2017, 247, 42-49.	1.9	21
30	Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods, 2017, 121-122, 29-44.	1.9	42
31	Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2220-2228.	1.8	39
32	Control of gene editing by manipulation of DNA repair mechanisms. Mammalian Genome, 2017, 28, 262-274.	1.0	57
33	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	5.8	116
34	Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357, .	6.0	978
35	Enhanced precision and efficiency. Nature Biomedical Engineering, 2017, 1, 856-857.	11.6	1
36	Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12514-12519.	3.3	110

#	Article	IF	CITATIONS
37	Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development (Cambridge), 2016, 143, 4279-4287.	1.2	14
38	Genome wide conditional mouse knockout resources. Drug Discovery Today: Disease Models, 2016, 20, 3-12.	1.2	3
39	Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology, 2016, 16, 4.	1.7	222
40	Genome Editing in Mice Using TALE Nucleases. Methods in Molecular Biology, 2016, 1338, 229-243.	0.4	2
41	High Efficiency Gene Correction in Hematopoietic Cells By Template-Free Crispr/Cas9 Genome Editing. Blood, 2016, 128, 3507-3507.	0.6	1
42	Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9. Genome Biology, 2015, 16, 244.	3.8	7
43	Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Research, 2015, 43, 6450-6458.	6.5	278
44	Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 2015, 33, 543-548.	9.4	1,024
45	Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in oneâ€cell mouse embryos. FEBS Open Bio, 2015, 5, 26-35.	1.0	37
46	FGF/FGFR2 Signaling Regulates the Generation and Correct Positioning of Bergmann Glia Cells in the Developing Mouse Cerebellum. PLoS ONE, 2014, 9, e101124.	1.1	18
47	Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach. Molecular Biotechnology, 2014, 56, 697-713.	1.3	2
48	Editing and investigating genomes with TALE and CRISPR/Cas systems: Genome engineering across species using TALENs. Methods, 2014, 69, 1.	1.9	3
49	Generation of targeted mouse mutants by embryo microinjection of TALENs. Methods, 2014, 69, 94-101.	1.9	17
50	Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nature Protocols, 2013, 8, 2355-2379.	5.5	57
51	Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3782-3787.	3.3	140
52	Target Validation in Mice by Constitutive and Conditional RNAi. Methods in Molecular Biology, 2013, 986, 307-323.	0.4	4
53	Characterization of the melanocortin-4-receptor nonsense mutation W16X in vitro and in vivo. Pharmacogenomics Journal, 2013, 13, 80-93.	0.9	12
54	Reversible and tissueâ€specific activation of MAP kinase signaling by tamoxifen in braf ^{V637} ER ^{T2} mice. Genesis, 2013, 51, 448-455.	0.8	7

#	Article	IF	CITATIONS
55	Highly Efficient Targeted Mutagenesis in Mice Using TALENs. Genetics, 2013, 195, 703-713.	1.2	62
56	An RNAi-Based Approach to Down-Regulate a Gene Family In Vivo. PLoS ONE, 2013, 8, e80312.	1.1	2
57	Efficient Generation of Rat Induced Pluripotent Stem Cells Using a Non-Viral Inducible Vector. PLoS ONE, 2013, 8, e55170.	1.1	23
58	Modeling disease mutations by gene targeting in one-cell mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9354-9359.	3.3	59
59	N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: A putative cellular mechanism for quetiapine as antidepressant. Neuropharmacology, 2012, 62, 209-216.	2.0	39
60	In Vivo Functional Requirement of the Mouse Ifitm1 Gene for Germ Cell Development, Interferon Mediated Immune Response and Somitogenesis. PLoS ONE, 2012, 7, e44609.	1.1	11
61	Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. Experimental Neurology, 2012, 235, 214-227.	2.0	64
62	Gene Editing in Oneâ€Cell Embryos by Zincâ€Finger and TAL Nucleases. Current Protocols in Mouse Biology, 2012, 2, 347-364.	1.2	2
63	MAPK Signaling Determines Anxiety in the Juvenile Mouse Brain but Depression-Like Behavior in Adults. PLoS ONE, 2012, 7, e35035.	1.1	41
64	Humanized c-Myc Mouse. PLoS ONE, 2012, 7, e42021.	1.1	4
65	Genetisch verÄ ¤ derte Tiere. , 2012, , 149-167.		0
66	Design and Generation of Geneâ€Targeting Vectors. Current Protocols in Mouse Biology, 2011, 1, 199-211.	1.2	6
67	Conditional RNAi in mice. Methods, 2011, 53, 142-150.	1.9	20
68	Constitutive and conditional RNAi transgenesis in mice. Methods, 2011, 53, 430-436.	1.9	10
69	CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood, 2011, 118, 6321-6331.	0.6	69
70	Genetic Models of Parkinson's Disease. Neuromethods, 2011, , 243-265.	0.2	1
71	Generating Conditional Knockout Mice. Methods in Molecular Biology, 2011, 693, 205-231.	0.4	64
72	Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15022-15026.	3.3	258

#	Article	IF	CITATIONS
73	Phenotypic annotation of the mouse X chromosome. Genome Research, 2010, 20, 1154-1164.	2.4	75
74	Gene Knockdown in the Mouse Through RNAi. Methods in Enzymology, 2010, 477, 387-414.	0.4	13
75	Local Knockdown of ERK2 in the Adult Mouse Brain Via Adeno-Associated Virus-Mediated RNA Interference. Molecular Biotechnology, 2009, 41, 263-269.	1.3	5
76	Generation of shRNA Transgenic Mice. Methods in Molecular Biology, 2009, 530, 101-129.	0.4	28
77	The Functional Annotation of Mammalian Genomes: The Challenge of Phenotyping. Annual Review of Genetics, 2009, 43, 305-333.	3.2	60
78	Overview on Mouse Mutagenesis. Methods in Molecular Biology, 2009, 530, 1-12.	0.4	19
79	Simultaneous Creâ€mediated conditional knockdown of two genes in mice. Genesis, 2008, 46, 144-151.	0.8	32
80	Sall4 isoforms act during proximal–distal and anterior–posterior axis formation in the mouse embryo. Genesis, 2008, 46, 463-477.	0.8	24
81	Novel caspaseâ€suicide proteins for tamoxifenâ€inducible apoptosis. Genesis, 2008, 46, 530-536.	0.8	18
82	Genetic mouse models for behavioral analysis through transgenic RNAi technology. Genes, Brain and Behavior, 2008, 7, 821-830.	1.1	23
83	Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Research, 2007, 35, e90-e90.	6.5	92
84	Differential mRNA distribution of components of the ERK/MAPK signalling cascade in the adult mouse brain. Journal of Comparative Neurology, 2007, 500, 542-556.	0.9	40
85	Inducible gene deletion in astroglia and radial glia-A valuable tool for functional and lineage analysis. Glia, 2006, 54, 21-34.	2.5	356
86	Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. Journal of Neuroscience Research, 2006, 83, 28-38.	1.3	67
87	Development of a species-specific RNA polymerase I-based shRNA expression vector. Nucleic Acids Research, 2006, 35, e10-e10.	6.5	12
88	Mouse mutagenesis and gene function. , 2005, , .		2
89	Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Research, 2005, 33, e67-e67.	6.5	101

90 Conditional Knockout Mice. , 2003, 209, 159-186.

#	Article	IF	CITATIONS
91	Neuron-Specific Ablation of PDGF-B Is Compatible with Normal Central Nervous System Development and Astroglial Response to Injury. Neurochemical Research, 2003, 28, 271-279.	1.6	34
92	Connexin43 is not expressed in principal cells of mouse cortex and hippocampus. European Journal of Neuroscience, 2003, 18, 267-274.	1.2	38
93	Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience, 2003, 6, 1100-1107.	7.1	418
94	Hybrid Embryonic Stem Cell-Derived Tetraploid Mice Show Apparently Normal Morphological, Physiological, and Neurological Characteristics. Molecular and Cellular Biology, 2003, 23, 3982-3989.	1.1	30
95	Rapid generation of inducible mouse mutants. Nucleic Acids Research, 2003, 31, 12e-12.	6.5	276
96	Enhanced efficiency through nuclear localization signal fusion on phage phiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Research, 2002, 30, 2299-2306.	6.5	101
97	Cre/ loxP Recombination System and Gene Targeting. , 2002, 180, 175-204.		149
98	Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nature Biotechnology, 2002, 20, 455-459.	9.4	137
99	BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Human Molecular Genetics, 2001, 10, 1317-1324.	1.4	644
100	DNA Hypomethylation Perturbs the Function and Survival of CNS Neurons in Postnatal Animals. Journal of Neuroscience, 2001, 21, 788-797.	1.7	344
101	Actin pedestal formation by enteropathogenicEscherichia coliand intracellular motility ofShigella flexneriare abolished in Nâ€WASPâ€defective cells. EMBO Reports, 2001, 2, 850-857.	2.0	241
102	Essential Role for TrkB Receptors in Hippocampus-Mediated Learning. Neuron, 1999, 24, 401-414.	3.8	731
103	Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature, 1998, 394, 901-904.	13.7	138
104	Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Research, 1998, 26, 1427-1432.	6.5	173
105	Introduction. Research in Immunology, 1997, 148, 447-449.	0.9	0
106	In Vivo Ablation of Surface Immunoglobulin on Mature B Cells by Inducible Gene Targeting Results in Rapid Cell Death. Cell, 1997, 90, 1073-1083.	13.5	1,017
107	Generation of Cre recombinase-specific monoclonal antibodies, able to characterize the pattern of Cre expression in cre-transgenic mouse strains. Journal of Immunological Methods, 1997, 207, 203-212.	0.6	28
108	Advances in gene targeting methods. Current Opinion in Immunology, 1997, 9, 183-188.	2.4	41

#	Article	IF	CITATIONS
109	Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses Journal of Clinical Investigation, 1996, 98, 1010-1020.	3.9	1,023
110	Plasmodium chabaudi chabaudi:Differential Susceptibility of Gene-Targeted Mice Deficient in IL-10 to an Erythrocytic-Stage Infection. Experimental Parasitology, 1996, 84, 253-263.	0.5	94
111	Somatic hypermutation occurs in B cells of terminal deoxynucleotidyl transferase-, CD23-, interleukin-4-, IgD- and CD30-deficient mouse mutants. European Journal of Immunology, 1996, 26, 1966-1969.	1.6	16
112	Requirement of mammalian DNA polymerase-Î ² in base-excision repair. Nature, 1996, 379, 183-186.	13.7	827
113	Requirement of mammalian DNA polymerase-β in base-excision repair. Nature, 1996, 379, 848-848.	13.7	5
114	Impaired Immunosuppressive Response to Ultraviolet Radiation in Interleukin-10–Deficient Mice. Journal of Investigative Dermatology, 1996, 107, 553-557.	0.3	84
115	Interleukin (IL)-4-independent immunoglobulin class switch to immunoglobulin (Ig)E in the mouse Journal of Experimental Medicine, 1996, 184, 1651-1661.	4.2	81
116	T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice Journal of Experimental Medicine, 1996, 184, 241-251.	4.2	372
117	Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice Journal of Experimental Medicine, 1996, 183, 515-526.	4.2	318
118	Conditional gene targeting Journal of Clinical Investigation, 1996, 98, 600-603.	3.9	406
119	Common Cytokine Receptor gamma chain (gammac)-Dependent Cytokines: Understanding in vivo Functions by Gene Targeting. Immunological Reviews, 1995, 148, 19-34.	2.8	75
120	Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses Journal of Experimental Medicine, 1995, 182, 99-108.	4.2	235
121	Inducible gene targeting in mice. Science, 1995, 269, 1427-1429.	6.0	1,732
122	Interleukin-10 Deficient Mice. Molecular Biology Intelligence Unit, 1995, , 141-148.	0.2	1
123	Antiviral immune responses in mice deficient for both interleukin-2 and interleukin-4. Journal of Virology, 1995, 69, 4842-4846.	1.5	58
124	Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance Journal of Clinical Investigation, 1995, 96, 2339-2347.	3.9	495
125	Resistance to murine acquired immunodeficiency syndrome (MAIDS). Science, 1994, 265, 264-264.	6.0	18
126	Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells Journal of Experimental Medicine, 1994, 179, 1349-1353.	4.2	153

#	Article	IF	CITATIONS
127	Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. European Journal of Immunology, 1994, 24, 281-284.	1.6	141
128	MHC class I expression in mice lacking the proteasome subunit LMP-7. Science, 1994, 265, 1234-1237.	6.0	496
129	Leishmania major and Toxoplasma gondii have opposite effects on cytokine synthesis by macrophages. Memorias Do Instituto Oswaldo Cruz, 1994, 89, 649-650.	0.8	2
130	IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. Journal of Immunology, 1994, 153, 3989-96.	0.4	209
131	Interleukin-4 transgenic mice of resistant background are susceptible toLeishmania major infection. European Journal of Immunology, 1993, 23, 566-569.	1.6	89
132	Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 1993, 75, 263-274.	13.5	4,004
133	Interleukin-4-deficient mice. Research in Immunology, 1993, 144, 637-638.	0.9	9
134	Knock out Mice Models for Immunodeficiency Diseases. , 1993, , 561-570.		0
135	A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin \hat{l} chain gene. Nature, 1991, 350, 423-426.	13.7	1,741
136	Major histocompatibility complex class II hyperexpression on B cells in interleukin 4-transgenic mice does not lead to B cell proliferation and hypergammaglobulinemia. European Journal of Immunology, 1991, 21, 921-925.	1.6	38
137	Generation and analysis of interleukin-4 deficient mice. Science, 1991, 254, 707-710.	6.0	1,222
138	Signal requirements for growth and differentiation of activated murine B lymphocytes. Journal of Immunology, 1985, 135, 1213-9.	0.4	18