Lilia Alberghina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992274/publications.pdf Version: 2024-02-01

		38720	53190
262	10,343	50	85
papers	citations	h-index	g-index
273	273	273	10210
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	INTEGRATE: Model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Computational Biology, 2022, 18, e1009337.	1.5	24
2	CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer. Nature Communications, 2022, 13, 2642.	5.8	15
3	Methotrexate inhibits SARS oVâ€2 virus replication "in vitroâ€. Journal of Medical Virology, 2021, 93, 1780-1785.	2.5	38
4	Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers, 2021, 13, 5058.	1.7	10
5	From computational genomics to systems metabolomics for precision cancer medicine and drug discovery. Pharmacological Research, 2020, 151, 104479.	3.1	1
6	Fuzzy modeling and global optimization to predict novel therapeutic targets in cancer cells. Bioinformatics, 2020, 36, 2181-2188.	1.8	10
7	Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer & Metabolism, 2020, 8, 22.	2.4	10
8	ROS networks: designs, aging, Parkinson's disease and precision therapies. Npj Systems Biology and Applications, 2020, 6, 34.	1.4	50
9	Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 1539.	1.8	64
10	Systems metabolomics: from metabolomic snapshots to design principles. Current Opinion in Biotechnology, 2020, 63, 190-199.	3.3	36
11	Nicotinamide, Nicotinamide Riboside and Nicotinic Acid—Emerging Roles in Replicative and Chronological Aging in Yeast. Biomolecules, 2020, 10, 604.	1.8	14
12	Single-cell Digital Twins for Cancer Preclinical Investigation. Methods in Molecular Biology, 2020, 2088, 331-343.	0.4	17
13	Differential Modulation of NF- <i>κ</i> B in Neurons and Astrocytes Underlies Neuroprotection and Antigliosis Activity of Natural Antioxidant Molecules. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	1.9	24
14	Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLoS Computational Biology, 2019, 15, e1006733.	1.5	70
15	Qualitative behavior of a coarse-grain growth model. , 2019, , .		1
16	Neural plasticity and adult neurogenesis: the deep biology perspective. Neural Regeneration Research, 2019, 14, 201.	1.6	26
17	An Integrated Model Quantitatively Describing Metabolism, Growth and Cell Cycle in Budding Yeast. Communications in Computer and Information Science, 2018, , 165-180.	0.4	3
18	Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death and Disease, 2018, 9, 391.	2.7	53

#	Article	IF	CITATIONS
19	Modeling Biological Timing and Synchronization Mechanisms by Means of Interconnections of Stochastic Switches. , 2018, 2, 19-24.		2
20	Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Frontiers in Cellular Neuroscience, 2018, 12, 459.	1.8	98
21	Methionine supplementation stimulates mitochondrial respiration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1901-1913.	1.9	17
22	A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect. PLoS Computational Biology, 2017, 13, e1005758.	1.5	64
23	Strategies for structuring interdisciplinary education in Systems Biology: an European perspective. Npj Systems Biology and Applications, 2016, 2, 16011.	1.4	21
24	Modulation of Matrix Metalloproteinases Activity in the Ventral Horn of the Spinal Cord Re-stores Neuroglial Synaptic Homeostasis and Neurotrophic Support following Peripheral Nerve Injury. PLoS ONE, 2016, 11, e0152750.	1.1	26
25	Rotenone down-regulates HSPA8/hsc70 chaperone protein in vitro : A new possible toxic mechanism contributing to Parkinson's disease. NeuroToxicology, 2016, 54, 161-169.	1.4	30
26	Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast. Scientific Reports, 2016, 6, 27942.	1.6	11
27	Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate. Nature Communications, 2016, 7, 11372.	5.8	35
28	Comparing Alzheimer's and Parkinson's diseases networks using graph communities structure. BMC Systems Biology, 2016, 10, 25.	3.0	28
29	Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Computational Biology and Chemistry, 2016, 62, 60-69.	1.1	36
30	Astrocytes and Microglia-Mediated Immune Response in Maladaptive Plasticity is Differently Modulated by NGF in the Ventral Horn of the Spinal Cord Following Peripheral Nerve Injury. Cellular and Molecular Neurobiology, 2016, 36, 37-46.	1.7	34
31	Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis. PLoS Genetics, 2016, 12, e1005931.	1.5	61
32	Divergent in vitro/in vivo responses to drug treatments of highly aggressive NIH-Ras cancer cells: a PET imaging and metabolomics-mass-spectrometry study. Oncotarget, 2016, 7, 52017-52031.	0.8	11
33	Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	1.9	18
34	Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury. Molecular Neurobiology, 2015, 52, 1440-1457.	1.9	40
35	The transcription factor Swi4 is target for PKA regulation of cell size at the G ₁ to S transition in <i>Saccharomyces cerevisiae</i> . Cell Cycle, 2015, 14, 2429-2438.	1.3	20
36	Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1615-1625.	1.9	29

#	Article	IF	CITATIONS
37	New Insights into the Connection Between Histone Deacetylases, Cell Metabolism, and Cancer. Antioxidants and Redox Signaling, 2015, 23, 30-50.	2.5	11
38	Computational Strategies for a System-Level Understanding of Metabolism. Metabolites, 2014, 4, 1034-1087.	1.3	54
39	Redox control of glutamine utilization in cancer. Cell Death and Disease, 2014, 5, e1561-e1561.	2.7	113
40	Astrocyte–neuron interplay in maladaptive plasticity. Neuroscience and Biobehavioral Reviews, 2014, 42, 35-54.	2.9	89
41	An ensemble evolutionary constraint-based approach to understand the emergence of metabolic phenotypes. Natural Computing, 2014, 13, 321-331.	1.8	18
42	Astrogliosis as a therapeutic target for neurodegenerative diseases. Neuroscience Letters, 2014, 565, 59-64.	1.0	136
43	A Systems Biology Road Map for the Discovery of Drugs Targeting Cancer Cell Metabolism. Current Pharmaceutical Design, 2014, 20, 2648-2666.	0.9	11
44	Snf1/AMPK promotes SBF and MBF-dependent transcription in budding yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3254-3264.	1.9	20
45	Remodelling of supraspinal neuroglial network in neuropathic pain is featured by a reactive gliosis of the nociceptive amygdala. European Journal of Pain, 2013, 17, 799-810.	1.4	34
46	Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene, 2013, 32, 352-362.	2.6	54
47	Protein Kinase CK2 Holoenzyme Promotes Start-Specific Transcription in Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 1271-1280.	3.4	7
48	Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death and Disease, 2013, 4, e732-e732.	2.7	70
49	A comparative study of Whi5 and retinoblastoma proteins: from sequence and structure analysis to intracellular networks. Frontiers in Physiology, 2013, 4, 315.	1.3	17
50	Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Frontiers in Physiology, 2012, 3, 362.	1.3	24
51	A surfaceâ€activated chemical ionization approach allows quantitative phosphorylation analysis of the cyclinâ€dependent kinase inhibitor Sic1 phosphorylated on Ser201. Rapid Communications in Mass Spectrometry, 2012, 26, 1527-1532.	0.7	2
52	BB14, a Nerve Growth Factor (NGF)-like peptide shown to be effective in reducing reactive astrogliosis and restoring synaptic homeostasis in a rat model of peripheral nerve injury. Biotechnology Advances, 2012, 30, 223-232.	6.0	41
53	Novel RasGRF1-derived Tat-fused peptides inhibiting Ras-dependent proliferation and migration in mouse and human cancer cells. Biotechnology Advances, 2012, 30, 233-243.	6.0	19
54	Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes. Biotechnology Advances, 2012, 30, 16-29.	6.0	7

#	Article	IF	CITATIONS
55	Targeting reactive astrogliosis by novel biotechnological strategies. Biotechnology Advances, 2012, 30, 261-271.	6.0	42
56	From cancer metabolism to new biomarkers and drug targets. Biotechnology Advances, 2012, 30, 30-51.	6.0	62
57	Cell growth and cell cycle in Saccharomyces cerevisiae: Basic regulatory design and protein–protein interaction network. Biotechnology Advances, 2012, 30, 52-72.	6.0	48
58	Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnology Advances, 2012, 30, 154-168.	6.0	8
59	Overexpression of Far1, a cyclin-dependent kinase inhibitor, induces a large transcriptional reprogramming in which RNA synthesis senses Far1 in a Sfp1-mediated way. Biotechnology Advances, 2012, 30, 185-201.	6.0	8
60	Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnology Advances, 2012, 30, 73-98.	6.0	22
61	Systems biology for biomedical innovation. Biotechnology Advances, 2012, 30, 1-3.	6.0	6
62	Compaction Properties of an Intrinsically Disordered Protein: Sic1 and Its Kinase-Inhibitor Domain. Biophysical Journal, 2011, 100, 2243-2252.	0.2	62
63	Nutritional Limitation Sensitizes Mammalian Cells to CSK-3β Inhibitors and Leads to Growth Impairment. American Journal of Pathology, 2011, 178, 1814-1823.	1.9	10
64	Oncogenic Kâ€Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 2011, 7, 523.	3.2	404
65	Reactive astrocytosis-induced perturbation of synaptic homeostasis is restored by nerve growth factor. Neurobiology of Disease, 2011, 41, 630-639.	2.1	50
66	Electrospray ionizationâ€mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein. Biotechnology Journal, 2011, 6, 96-100.	1.8	22
67	Crossâ€ŧalk between cell cycle induction and mitochondrial dysfunction during oxidative stress and nerve growth factor withdrawal in differentiated PC12 cells. Journal of Neuroscience Research, 2011, 89, 1302-1315.	1.3	18
68	An Acidic Loop and Cognate Phosphorylation Sites Define a Molecular Switch That Modulates Ubiquitin Charging Activity in Cdc34-Like Enzymes. PLoS Computational Biology, 2011, 7, e1002056.	1.5	29
69	Intrathecal NGF Administration Reduces Reactive Astrocytosis and Changes Neurotrophin Receptors Expression Pattern in a Rat Model of Neuropathic Pain. Cellular and Molecular Neurobiology, 2010, 30, 51-62.	1.7	67
70	Timing control in regulatory networks by multisite protein modifications. Trends in Cell Biology, 2010, 20, 634-641.	3.6	31
71	Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 314-323.	0.5	119
72	Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 630-638.	1.9	20

#	Article	IF	CITATIONS
73	Proteomics and systems biology to tackle biological complexity: Yeast as a case study. Proteomics, 2010, 10, 4337-4341.	1.3	5
74	Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae. Sensors, 2010, 10, 6195-6240.	2.1	102
75	Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication. PLoS Computational Biology, 2010, 6, e1000783.	1.5	37
76	Snf1/AMPK promotes S-phase entrance by controlling <i>CLB5</i> transcription in budding yeast. Cell Cycle, 2010, 9, 2189-2200.	1.3	30
77	Networks and circuits in cell regulation. Biochemical and Biophysical Research Communications, 2010, 396, 881-886.	1.0	6
78	CK2 activity is modulated by growth rate in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2010, 398, 44-50.	1.0	12
79	The Insulin-Like Growth Factor Receptor I Promotes Motility and Invasion of Bladder Cancer Cells through Akt- and Mitogen-Activated Protein Kinase-Dependent Activation of Paxillin. American Journal of Pathology, 2010, 176, 2997-3006.	1.9	91
80	Glutamine Deprivation Induces Abortive S-Phase Rescued by Deoxyribonucleotides in K-Ras Transformed Fibroblasts. PLoS ONE, 2009, 4, e4715.	1.1	131
81	Data recovery and integration from public databases uncovers transformation-specific transcriptional downregulation of cAMP-PKA pathway-encoding genes. BMC Bioinformatics, 2009, 10, S1.	1.2	6
82	Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics, 2009, 10, S16.	1.2	37
83	Systems biology of the cell cycle of Saccharomyces cerevisiae: From network mining to system-level properties. Biotechnology Advances, 2009, 27, 960-978.	6.0	31
84	Analysis and modeling of growing budding yeast populations at the single cell level. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 114-120.	1.1	37
85	Order propensity of an intrinsically disordered protein, the cyclinâ€dependentâ€kinase inhibitor Sic1. Proteins: Structure, Function and Bioinformatics, 2009, 76, 731-746.	1.5	64
86	Molecular networks and system-level properties. Journal of Biotechnology, 2009, 144, 224-233.	1.9	37
87	Systems Biology for biotechnological innovation. Journal of Biotechnology, 2009, 144, 165-166.	1.9	2
88	Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Science, 2009, 12, 2312-2319.	3.1	119
89	Unscrambling thermal stability and temperature adaptation in evolved variants of a coldâ€active lipase. FEBS Letters, 2008, 582, 2313-2318.	1.3	20
90	Systems biology of the yeast cell cycle. Journal of Biotechnology, 2008, 136, S20.	1.9	0

#	Article	IF	CITATIONS
91	The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G ₁ to S transition in <i>Saccharomyces cerevisiae</i> . Cell Cycle, 2008, 7, 1391-1401.	1.3	44
92	A New Nerve Growth Factor-Mimetic Peptide Active on Neuropathic Pain in Rats. Journal of Neuroscience, 2008, 28, 2698-2709.	1.7	107
93	Different Types of Cell Death in Organismal Aging and Longevity: State of the Art and Possible Systems Biology Approach. Current Pharmaceutical Design, 2008, 14, 226-236.	0.9	11
94	Proteomic Analysis of a Nutritional Shift-up in Saccharomyces cerevisiae Identifies Gvp36 as a BAR-containing Protein Involved in Vesicular Traffic and Nutritional Adaptation. Journal of Biological Chemistry, 2008, 283, 4730-4743.	1.6	15
95	Cell Size at S Phase Initiation: An Emergent Property of the G1/S Network. PLoS Computational Biology, 2007, 3, e64.	1.5	96
96	In CK2 inactivated cells the cyclin dependent kinase inhibitor Sic1 is involved in cell-cycle arrest before the onset of S phase. Biochemical and Biophysical Research Communications, 2007, 359, 921-927.	1.0	31
97	Molecular evolution of the neurotrophin family members and their Trk receptors. Gene, 2007, 394, 1-12.	1.0	34
98	An approach to address Candida rugosa lipase regioselectivity in the acylation reactions of trytilated glucosides. Journal of Biotechnology, 2007, 128, 908-918.	1.9	19
99	Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae. Molecular Microbiology, 2007, 63, 1482-1494.	1.2	63
100	Lipases: Molecular Structure and Function. , 2007, , 263-281.		33
101	Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1338-1356.	0.5	68
102	Catalytic competence of the Ras-GEF domain of hSos1 requires intra-REM domain interactions mediated by Phenylalanine 577. FEBS Letters, 2006, 580, 6322-6328.	1.3	8
103	Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells. Biochemical and Biophysical Research Communications, 2006, 346, 786-793.	1.0	24
104	Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene, 2006, 25, 5391-5404.	2.6	104
105	The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration. BMC Neuroscience, 2006, 7, S2.	0.8	42
106	The Histone Deubiquitinating Enzyme Ubp10 Is Involved in rDNA Locus Control in Saccharomyces cerevisiae by Affecting Sir2p Association. Genetics, 2006, 174, 2249-2254.	1.2	13
107	A modular systems biology analysis of cell cycle entrance into S-phase. Topics in Current Genetics, 2005, , 325-347.	0.7	5
108	Glucose modulation of cell size in yeast. Biochemical Society Transactions, 2005, 33, 294-296.	1.6	15

#	Article	IF	CITATIONS
109	Acquired glucose sensitivity of k-ras transformed fibroblasts. Biochemical Society Transactions, 2005, 33, 297-299.	1.6	10
110	The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Biochemical Journal, 2005, 387, 639-647.	1.7	66
111	SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast, 2005, 22, 385-399.	0.8	30
112	Recombinant human nerve growth factor with a marked activity in vitro and in vivo. Proceedings of the United States of America, 2005, 102, 18658-18663.	3.3	21
113	Subcellular Localization of the Cyclin Dependent Kinase Inhibitor Sic1 is Modulated by the Carbon Source in Budding Yeast. Cell Cycle, 2005, 4, 1798-1807.	1.3	25
114	Heterologous production of five Hepatitis C virus-derived antigens in three Saccharomyces cerevisiae host strains. Journal of Biotechnology, 2005, 120, 46-58.	1.9	2
115	CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1. Biochemical and Biophysical Research Communications, 2005, 336, 1040-1048.	1.0	15
116	Mutations in the "lid―region affect chain length specificity and thermostability of aPseudomonas fragilipase. FEBS Letters, 2005, 579, 2383-2386.	1.3	89
117	The isolated catalytic hairpin of the Ras-specific guanine nucleotide exchange factor Cdc25Mmretains nucleotide dissociation activity but has impaired nucleotide exchange activity. FEBS Letters, 2005, 579, 6851-6858.	1.3	8
118	A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. Journal of Cell Biology, 2004, 167, 433-443.	2.3	49
119	The yeast : a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Research, 2004, 4, 493-504.	1.1	53
120	Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S-Cdk kinase activity in Saccharomyces cerevisiae. Molecular Microbiology, 2004, 51, 447-460.	1.2	41
121	Systems Biology and the Molecular Circuits of Cancer. ChemBioChem, 2004, 5, 1322-1333.	1.3	38
122	Systems Biology and the Molecular Circuits of Cancer. ChemInform, 2004, 35, no.	0.1	2
123	Involvement of the yeast metacaspase Yca1 in Δ-programmed cell death. FEMS Yeast Research, 2004, 5, 141-147.	1.1	46
124	Transcriptional Profiling of ubp10 Null Mutant Reveals Altered Subtelomeric Gene Expression and Insurgence of Oxidative Stress Response. Journal of Biological Chemistry, 2004, 279, 6414-6425.	1.6	40
125	Probing Control Mechanisms of Cell Cycle and Ageing in Budding Yeast. Current Genomics, 2004, 5, 615-627.	0.7	5
126	Glucose metabolism and cell size in continuous cultures ofSaccharomyces cerevisiae. FEMS Microbiology Letters, 2003, 229, 165-171.	0.7	47

#	Article	IF	CITATIONS
127	The cold-active lipase of Pseudomonas fragi. FEBS Journal, 2002, 269, 3321-3328.	0.2	95
128	Towards a blueprint of the cell cycle. Oncogene, 2001, 20, 1128-1134.	2.6	22
129	Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Biochemical Journal, 2000, 351, 143.	1.7	14
130	Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Biochemical Journal, 2000, 351, 143-150.	1.7	21
131	A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene, 2000, 19, 2147-2154.	2.6	27
132	Design and realization of a tailor-made enzyme to modify the molecular recognition of 2-arylpropionic esters by Candida rugosa lipase. BBA - Proteins and Proteomics, 2000, 1543, 146-158.	2.1	26
133	Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from <i>Candida rugosa</i> . Protein Science, 2000, 9, 985-990.	3.1	34
134	Microbial analysis at the single-cell level. Journal of Microbiological Methods, 2000, 42, 1-2.	0.7	2
135	Relating growth dynamics and glucoamylase excretion of individual Saccharomyces cerevisiae cells. Journal of Microbiological Methods, 2000, 42, 49-55.	0.7	5
136	Real-time flow cytometric quantification of GFP expression and Gfp-fluorescence generation in Saccharomyces cerevisiae. Journal of Microbiological Methods, 2000, 42, 57-64.	0.7	15
137	Improved Secretion of Native Human Insulin-Like Growth Factor 1 from gas1 Mutant Saccharomyces cerevisiae Cells. Applied and Environmental Microbiology, 2000, 66, 5477-5479.	1.4	38
138	Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts. Applied and Environmental Microbiology, 1999, 65, 4211-4215.	1.4	378
139	Characterization and Properties of Dominant-negative Mutants of the Ras-specific Guanine Nucleotide Exchange Factor CDC25Mm. Journal of Biological Chemistry, 1999, 274, 36656-36662.	1.6	21
140	NADH reoxidation does not control glycolytic flux during exposure of respiringSaccharomyces cerevisiaecultures to glucose excess. FEMS Microbiology Letters, 1999, 171, 133-140.	0.7	25
141	Chromosome Separation and Exit from Mitosis in Budding Yeast: Dependence on Growth Revealed by cAMP-Mediated Inhibition. Experimental Cell Research, 1999, 250, 510-523.	1.2	33
142	Characterization of the Candida rugosa lipase system and overexpression of the lip1 isoenzyme in a non-conventional yeast. Chemistry and Physics of Lipids, 1998, 93, 47-55.	1.5	23
143	Analysis of the secondary structure of the catalytic domain of mouse Ras exchange factor CDC25Mm. BBA - Proteins and Proteomics, 1998, 1383, 292-300.	2.1	2
144	Design, total synthesis, and functional overexpression of the Candida rugosa lipl gene coding for a major industrial lipase. Protein Science, 1998, 7, 1415-1422.	3.1	114

#	Article	IF	CITATIONS
145	Mutations at position 1122 in the catalytic domain of the mouse ras-specific guanine nucleotide exchange factor CDC25Mmoriginate both loss-of-function and gain-of-function proteins. FEBS Letters, 1998, 440, 291-296.	1.3	9
146	Control by Nutrients of Growth and Cell Cycle Progression in Budding Yeast, Analyzed by Double-Tag Flow Cytometry. Journal of Bacteriology, 1998, 180, 3864-3872.	1.0	45
147	[14] Cloning, sequencing, and expression of Candida rugosa lipases. Methods in Enzymology, 1997, 284, 246-260.	0.4	14
148	Identification of different daughter and parent subpopulations in an asynchronously growing Saccharomyces cerevisiae population. Research in Microbiology, 1997, 148, 205-215.	1.0	21
149	The evolution of a non universal codon as detected in Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 1997, 3, 37-41.	1.8	4
150	Candida albicans homologue ofGGP1/GAS1 gene is functional inSaccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Yeast, 1996, 12, 361-368.	0.8	36
151	Candida Rugosa Lipase Isozymes. , 1996, , 115-124.		6
152	Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Yeast, 1996, 12, 361-8.	0.8	25
153	Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnology Progress, 1995, 11, 294-298.	1.3	114
154	A double flow cytometric tag allows tracking of the dynamics of cell cycle progression of newbornSaccharomyces cerevisiae cells during balanced exponential growth. Yeast, 1995, 11, 1157-1169.	0.8	29
155	The Minimal Active Domain of the Mouse Ras Exchange Factor CDC25Mm. Biochemical and Biophysical Research Communications, 1995, 206, 253-259.	1.0	33
156	Evolutionary origin of nonuniversal CUGSer codon in some Candida species as inferred from a molecular phylogeny Genetics, 1995, 141, 903-907.	1.2	56
157	Variability within the Candida rugosa Upases family. Protein Engineering, Design and Selection, 1994, 7, 531-535.	1.0	97
158	Repression of growth-regulated Gl cyclin expression by cyclic AMP in budding yeast. Nature, 1994, 371, 339-342.	13.7	160
159	Flow-cytometric determination of the respiratory activity in growing Saccharomyces cerevisiae populations. Biotechnology Progress, 1994, 10, 193-197.	1.3	24
160	O-linked oligosaccharides in yeast glycosyl phosphatidylinositol-anchored protein gp115 are clustered in a serine-rich region not essential for its function Journal of Biological Chemistry, 1994, 269, 19695-19700.	1.6	41
161	High Production of Lactic Acid from Metabolically Engineered Saccharomyces cerevisiae. , 1994, , 417-423.		0
162	O-linked oligosaccharides in yeast glycosyl phosphatidylinositol-anchored protein gp115 are clustered in a serine-rich region not essential for its function. Journal of Biological Chemistry, 1994, 269, 19695-700.	1.6	41

#	Article	IF	CITATIONS
163	Evolutionary conservation of genomic sequences related to the GGP1 gene encoding a yeast GPI-anchored glycoprotein. Current Genetics, 1993, 23, 19-21.	0.8	15
164	Transcript accumulation of the GGP1 gene, encoding a yeast GPI-anchored glycoprotein, is inhibited during arrest in the G1 phase and during sporulation. Current Genetics, 1993, 24, 382-387.	0.8	17
165	InSaccharomyces cerevisiae, protein secretion into the growth medium depends on environmental factors. Yeast, 1993, 9, 77-84.	0.8	31
166	Alteration of cell population structure due to cell lysis inSaccharomyces cerevisiae cells overexpressing theGAL4 gene. Yeast, 1993, 9, 575-582.	0.8	27
167	Quantative flow cytometry: Analysis of protein distributions in budding yeast. A mini-review. Yeast, 1993, 9, 815-823.	0.8	49
168	Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnology Progress, 1993, 9, 594-599.	1.3	17
169	Cloning and analysis of Candida cylindracea lipase sequences. Gene, 1993, 124, 45-55.	1.0	131
170	Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae CPI-anchored protein gp115 in morphogenesis and cell separation. Journal of Bacteriology, 1993, 175, 1879-1885.	1.0	116
171	In vitro interaction between Saccharomyces cerevisiae CDC25 and RAS2 proteins. Biochemical and Biophysical Research Communications, 1992, 186, 467-474.	1.0	2
172	Homology-derived three-dimensional structure prediction of Candida cylindracea lipase. Lipids and Lipid Metabolism, 1992, 1165, 129-133.	2.6	10
173	cAMP-mediated increase in the critical cell size required for the G1 to S transition in Saccharomyces cerevisiae. Experimental Cell Research, 1992, 201, 299-306.	1.2	39
174	Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator EMBO Journal, 1992, 11, 2151-2157.	3.5	222
175	Expression of high levels of human tissue plasminogen activator in yeast under the control of an inducible GAL promoter. Applied Microbiology and Biotechnology, 1992, 37, 604-8.	1.7	21
176	Enhanced expression of heterologous proteins by the use of a superinducible vector in budding yeast. Applied Microbiology and Biotechnology, 1992, 36, 655-8.	1.7	15
177	Development of high cell density cultures of engineeredSaccharomyces cerevisiae cells able to grow on lactose. Biotechnology Letters, 1992, 14, 1085-1088.	1.1	17
178	The complete DNA sequence of yeast chromosome III. Nature, 1992, 357, 38-46.	13.7	924
179	Cloning and nucleotide sequences of two lipase genes from Candida cylindracea. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1131, 227-232.	2.4	77
180	Lactose/whey utilization and ethanol production by transformedSaccharomyces cerevisiae cells. Biotechnology and Bioengineering, 1992, 39, 799-805.	1.7	61

#	Article	IF	CITATIONS
181	A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins Journal of Biological Chemistry, 1992, 267, 24181-24183.	1.6	30
182	Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO Journal, 1992, 11, 2151-7.	3.5	86
183	A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins. Journal of Biological Chemistry, 1992, 267, 24181-3.	1.6	25
184	The overexpression of the 3′ terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 206-212.	2.4	10
185	Posttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 47-53.	2.4	9
186	Bombesin stimulates a high affinity GTPase activity in membranes of Swiss 3T3 fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 397-400.	1.9	1
187	Characterization of the tyrosine phosphorylation of calpactin I (annexin II) induced by platelet-derived growth factor. Biochemical Journal, 1991, 278, 447-452.	1.7	36
188	Flow cytometry and cell cycle kinetics in continuous and fed-batch fermentations of budding yeast. Biotechnology Progress, 1991, 7, 299-304.	1.3	45
189	The sequence of 8·8 kb of yeast chromosome III cloned in lambda PM3270 contains an unusual long ORF (YCR601). Yeast, 1991, 7, 631-641.	0.8	4
190	Heterologous gene expression in continuous cultures of budding yeast. Applied Microbiology and Biotechnology, 1991, 34, 632-636.	1.7	17
191	Isolation and deduced amino acid sequence of the gene encoding gp115, a yeast glycophospholipid-anchored protein containing a serine-rich region. Journal of Biological Chemistry, 1991, 266, 12242-12248.	1.6	80
192	Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation. Biotechnology and Applied Biochemistry, 1991, 14, 82-92.	1.4	32
193	Isolation and deduced amino acid sequence of the gene encoding gp115, a yeast glycophospholipid-anchored protein containing a serine-rich region. Journal of Biological Chemistry, 1991, 266, 12242-8.	1.6	75
194	The cell cycle modulated glycoprotein GP115 is one of the major yeast proteins containing glycosylphosphatidylinositol. BBA - Proteins and Proteomics, 1990, 1038, 277-285.	2.1	47
195	Structured segregated models and analysis of self-oscillating yeast continuous cultures. Bioprocess and Biosystems Engineering, 1990, 5, 175-180.	0.5	36
196	Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnology and Bioengineering, 1990, 36, 453-459.	1.7	70
197	Kinetics of tyrosine phosphorylation and internalization of human EGF receptors overexpressed in NIH 3T3 fibroblasts. Experimental Cell Research, 1990, 191, 323-327.	1.2	5
198	Changes in the protein synthesis pattern during a nutritional shift-down transition in Saccharomyces cerevisiae. Experimental Cell Research, 1990, 187, 315-319.	1.2	3

#	Article	IF	CITATIONS
199	Overexpression of the CDC25 gene, an upstream element of the ras/adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product. Biochemical and Biophysical Research Communications, 1990, 172, 61-69.	1.0	23
200	cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol Journal of Biological Chemistry, 1990, 265, 14315-14320.	1.6	6
201	cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol. Journal of Biological Chemistry, 1990, 265, 14315-20.	1.6	3
202	Kinetics and Regulation of Tyrosine Phosphorylation of the Platelet Derived Growth Factor Receptor. Tumori, 1989, 75, 362-366.	0.6	0
203	Expression of cloned Saccharomyces diastaticus glucoamylase under natural and inducible promoters. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1008, 168-176.	2.4	17
204	Secretion of Escherichia coli β-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase-encoding STA2 gene. Biochemical and Biophysical Research Communications, 1989, 164, 1331-1338.	1.0	19
205	Identification of a protein cross-reacting with anti-phosphotyrosine antibodies in yeast insoluble cytoplasmic matrices. Biochemical and Biophysical Research Communications, 1989, 160, 887-896.	1.0	2
206	Effect of the different dimeric forms of the platelet-derived growth factor on cellular responses in mouse Swiss 3T3 fibroblasts. FEBS Letters, 1989, 255, 191-195.	1.3	13
207	Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae Molecular and Cellular Biology, 1989, 9, 2715-2723.	1.1	72
208	Cell Size Modulation by <i>CDC25</i> and <i>RAS2</i> Genes in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1989, 9, 2715-2723.	1.1	29
209	Inhibition of phosphotyrosine phosphatases reveals candidate substrates of the PDGF receptor kinase. European Journal of Cell Biology, 1989, 50, 428-34.	1.6	21
210	Oscillations in continuous cultures of budding yeast: A segregated parameter analysis. Biotechnology and Bioengineering, 1988, 32, 411-417.	1.7	111
211	Physiological and genetic modulation of inducible expression ofEscherichia coli ?-galactosidase inSaccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1988, 28, 160-165.	1.7	14
212	Dissociation of the ligand and dephosphorylation of the platelet-derived growth factor receptor. FEBS Letters, 1988, 233, 371-374.	1.3	14
213	Effect of the growth conditions on the expression of cell-surface-associated platelet-derived growth factor receptors in mouse fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 351-357.	1.9	0
214	Effect of the growth conditions on the expression of cell-surface-associated platelet-derived growth factor receptors in mouse fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 351-357.	0.5	2
215	Mathematical Modelling of Cell Growth and Proliferation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1988, 21, 269-274.	0.4	2
216	Kinetics and regulation of the tyrosine phosphorylation of epidermal growth factor receptor in in intact A431 cells Molecular and Cellular Biology, 1988, 8, 1345-1351.	1.1	52

#	Article	IF	CITATIONS
217	Kinetics and regulation of the tyrosine phosphorylation of epidermal growth factor receptor in intact A431 cells. Molecular and Cellular Biology, 1988, 8, 1345-1351.	1.1	22
218	Immunochemical characterization of gp115, a yeast glycoprotein modulated by the cell cycle. European Journal of Cell Biology, 1988, 47, 173-80.	1.6	17
219	Effect of tunicamycin on cell cycle progression in budding yeast. Experimental Cell Research, 1987, 171, 448-459.	1.2	36
220	Translational regulation of the expression of zein cloned in yeast under an inducible GAL promoter. Biochemical and Biophysical Research Communications, 1987, 146, 809-814.	1.0	9
221	Immunological cross-reactivity of fungal and yeast plasma membrane H+ -ATPase. FEBS Letters, 1986, 206, 135-141.	1.3	34
222	Molecular cloaing and regulation of the expression of the MET2 gene of Saccharomyces cerevisiae. Gene, 1986, 46, 71-78.	1.0	28
223	In vivo phosphorylation and dephosphorylation of the platelet-derived growth factor receptor studied by immunoblot analysis with phosphotyrosine antibodies. Biochimica Et Biophysica Acta - General Subjects, 1986, 881, 54-61.	1.1	49
224	Availability of PDGF receptor to PDGF stimulated tyrosine phosphorylation in mouse fibroblasts in different states of growth. Cell Biology International Reports, 1986, 10, 164-164.	0.7	1
225	Molecular cloning and transcriptional analysis of the start gene <i>CDC25</i> of <i>Saccharomyces cerevisiae</i> . EMBO Journal, 1986, 5, 2363-2369.	3.5	48
226	Transcription and expression of zein sequences in yeast under natural plant or yeast promoters. EMBO Journal, 1986, 5, 459-465.	3.5	35
227	Cell cycle modelling. BioSystems, 1986, 19, 23-44.	0.9	18
228	High levels of inducible expression of cloned β-galactosidase ofKluyveromyces lactis inSaccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1986, 25, 124-131.	1.7	14
229	Identification of a glycoprotein involved in cell cycle progression in yeast Journal of Biological Chemistry, 1986, 261, 3479-3482.	1.6	27
230	Yeast population models for monitoring and control of biotechnical processes. IEE Proceedings D: Control Theory and Applications, 1986, 133, 210.	0.4	17
231	YEAST BIOTECHNOLOGICAL PROCESSES MONITORED BY ANALYSIS OF SEGREGATED DATA WITH STRUCTURED MODELS. , 1986, , 245-251.		1
232	High levels of inducible expression of cloned ?-galactosidase of Kluyveromyces lactis in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1986, 25, 124-131.	1.7	7
233	Transcription and expression of zein sequences in yeast under natural plant or yeast promoters. EMBO Journal, 1986, 5, 459-65.	3.5	16
234	Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae. EMBO Journal, 1986, 5, 2363-2369.	3.5	16

#	Article	IF	CITATIONS
235	Identification of a glycoprotein involved in cell cycle progression in yeast. Journal of Biological Chemistry, 1986, 261, 3479-82.	1.6	23
236	Yeast Biotechnological Processes Monitored by Analysis of Segregated Data with Structured Models. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1985, 18, 245-251.	0.4	1
237	G1 phase heterogeneity in exponentially growing Swiss 3T3 mouse fibroblasts. Experimental Cell Research, 1984, 153, 135-144.	1.2	14
238	Identification of a labile protein involved in the G1-to-S transition in Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 120-124.	3.3	31
239	Analysis of protein distribution in budding yeast. Biotechnology and Bioengineering, 1983, 25, 1295-1310.	1.7	66
240	A bimolecular mechanism for the cell size control of the cell cycle. BioSystems, 1983, 16, 297-305.	0.9	18
241	Analysis of Protein Distribution in Populations of Budding Yeast Based on a Structured Model of Cell Growth. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1983, 16, 83-91.	0.4	1
242	ANALYSIS OF PROTEIN DISTRIBUTION IN POPULATIONS OF BUDDING YEAST BASED ON A STRUCTURED MODEL OF CELL GROWTH. , 1983, , 83-91.		3
243	Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae. Journal of Bacteriology, 1983, 156, 1282-1291.	1.0	144
244	Control of the yeast cell cycle by protein synthesis*1. Experimental Cell Research, 1982, 142, 69-78.	1.2	84
245	Cell cycle analysis in a human cell line (EUE cells). Cytometry, 1982, 2, 426-430.	1.8	14
246	The acquisition of competence as a possible source of cell cycle variability in mouse fibroblasts. Cell Biology International Reports, 1981, 5, 963-967.	0.7	8
247	Control of growth and of the nuclear division cycle in Neurospora crassa Microbiological Reviews, 1981, 45, 99-122.	10.1	14
248	Control of growth and of the nuclear division cycle in Neurospora crassa. Microbiological Reviews, 1981, 45, 99-122.	10.1	28
249	Analysis of a cell cycle model for Escherichia coli. Journal of Mathematical Biology, 1980, 9, 389-398.	0.8	15
250	Analysis of a model of cell cycle in eukaryotes. Journal of Theoretical Biology, 1980, 87, 171-188.	0.8	26
251	Reduction of ribosome activity and synthesis of stable RNA in Neurospora crassa. Nucleic Acids and Protein Synthesis, 1980, 610, 318-330.	1.7	9
252	Nuclear division cycle in Neurospora crassa hyphae under different growth conditions. Journal of Bacteriology, 1980, 142, 268-275.	1.0	16

#	Article	IF	CITATIONS
253	Relationship Between Cell Composition and Timing of Cell Cycle Events in Fission Yeast. Differentiation, 1979, 15, 135-138.	1.0	8
254	Level and Turnover of Polyadenylate-Containing Ribonucleic Acid in Neurospora crassa in Different Steady States of Growth. FEBS Journal, 1979, 99, 1-7.	0.2	18
255	Modeling microbial growth: A model of growth and cell division ofEscherichia coli. Bollettino Di Zoologia, 1979, 46, 127-135.	0.3	0
256	Intracellular protein degradation in Neurospora crassa Journal of Biological Chemistry, 1979, 254, 7047-7054.	1.6	17
257	Intracellular protein degradation in Neurospora crassa. Journal of Biological Chemistry, 1979, 254, 7047-54.	1.6	15
258	Effects of caffeine on RNA and protein synthesis in Neurospora crassa. Experimental Mycology, 1978, 2, 366-376.	1.8	6
259	Modeling the control of cell growth. Simulation, 1978, 31, 37-41.	1.1	2
260	Low-temperature restriction of the rate of protein synthesis in Neurospora crassa. Experimental Mycology, 1977, 1, 339-351.	1.8	12
261	Dynamics of the cell cycle in mammalian cells. Journal of Theoretical Biology, 1977, 69, 633-643.	0.8	8
262	Systems Biology: necessary developments and trends. , 0, , 389-402.		3