
Maria Teresa Buscaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7991961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grain-size effects on the ferroelectric behavior of dense nanocrystallineBaTiO3ceramics. Physical Review B, 2004, 70, .	3.2	762
2	High dielectric constant and frozen macroscopic polarization in dense nanocrystallineBaTiO3ceramics. Physical Review B, 2006, 73, .	3.2	273
3	Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2. Journal of the American Ceramic Society, 2005, 88, 2374-2379.	3.8	151
4	Ferroelectric properties of dense nanocrystalline BaTiO3ceramics. Nanotechnology, 2004, 15, 1113-1117.	2.6	140
5	Atomistic Simulation of Dopant Incorporation in Barium Titanate. Journal of the American Ceramic Society, 2001, 84, 376-84.	3.8	132
6	Kinetics and Mechanism of Aqueous Chemical Synthesis of BaTiO3Particles. Chemistry of Materials, 2004, 16, 1536-1543.	6.7	113
7	Second-Harmonic Generation of Single BaTiO ₃ Nanoparticles down to 22 nm Diameter. ACS Nano, 2013, 7, 5343-5349.	14.6	109
8	Grain Sizeâ€Dependent Properties of Dense Nanocrystalline Barium Titanate Ceramics. Journal of the American Ceramic Society, 2012, 95, 3912-3921.	3.8	104
9	Grain size effect on the nonlinear dielectric properties of barium titanate ceramics. Applied Physics Letters, 2010, 97, .	3.3	98
10	Incorporation of Er ³⁺ into BaTiO ₃ . Journal of the American Ceramic Society, 2002, 85, 1569-1575.	3.8	87
11	Preparation and characterisation of the Ba(Zr,Ti)O3 ceramics with relaxor properties. Journal of the European Ceramic Society, 2007, 27, 4061-4064.	5.7	86
12	Size and Shape Control of SrTiO3Particles Grown by Epitaxial Self-Assembly. Chemistry of Materials, 2006, 18, 1627-1633.	6.7	84
13	Synthesis of BaTiO ₃ Particles with Tailored Size by Precipitation from Aqueous Solutions. Journal of the American Ceramic Society, 2004, 87, 79-83.	3.8	80
14	Kinetic Modeling of Aqueous and Hydrothermal Synthesis of Barium Titanate (BaTiO3). Chemistry of Materials, 2005, 17, 5346-5356.	6.7	80
15	Solidâ€State Synthesis of Nanocrystalline BaTiO ₃ : Reaction Kinetics and Powder Properties. Journal of the American Ceramic Society, 2008, 91, 2862-2869.	3.8	80
16	Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2014, 34, 307-316.	5.7	78
17	Preparation and characterisation of the magneto-electric xBiFeO3–(1â^'x)BaTiO3 ceramics. Journal of the European Ceramic Society, 2006, 26, 3027-3030.	5.7	76
18	Polymer-assisted precipitation of ZnO nanoparticles with narrow particle size distribution. Journal of the European Ceramic Society. 2010, 30, 591-598.	5.7	71

#	Article	lF	CITATIONS
19	Synthesis of BaTiO3Coreâ^'Shell Particles and Fabrication of Dielectric Ceramics with Local Graded Structure. Chemistry of Materials, 2006, 18, 4002-4010.	6.7	69
20	Coating of BaCO3Crystals with TiO2:Â Versatile Approach to the Synthesis of BaTiO3Tetragonal Nanoparticles. Chemistry of Materials, 2007, 19, 711-718.	6.7	69
21	Ferroelectric BaTiO ₃ Nanowires by a Topochemical Solid-State Reaction. Chemistry of Materials, 2009, 21, 5058-5065.	6.7	67
22	Hydrothermal Synthesis of SrTiO ₃ Mesocrystals: Single Crystal to Mesocrystal Transformation Induced by Topochemical Reactions. Crystal Growth and Design, 2012, 12, 4450-4456.	3.0	66
23	Fe ₂ O ₃ @BaTiO ₃ Coreâ^ Shell Particles as Reactive Precursors for the Preparation of Multifunctional Composites Containing Different Magnetic Phases. Chemistry of Materials, 2010, 22, 4740-4748.	6.7	57
24	Local switching properties of dense nanocrystalline BaTiO3 ceramics. Applied Physics Letters, 2004, 84, 2418-2420.	3.3	50
25	Investigation of the ferroelectric–relaxor crossover in Ce-doped BaTiO3ceramics by impedance spectroscopy and Raman study. Phase Transitions, 2013, 86, 703-714.	1.3	37
26	Morphological Control of Hydrothermal Ni(OH)2 in the Presence of Polymers and Surfactants: Nanocrystals, Mesocrystals, and Superstructures. Crystal Growth and Design, 2008, 8, 3847-3855.	3.0	34
27	PVDF–ferrite composites with dual magneto-piezoelectric response for flexible electronics applications: synthesis and functional properties. Journal of Materials Science, 2020, 55, 3926-3939.	3.7	29
28	Formation of Bi4Ti3O12One-Dimensional Structures by Solid-State Reactive Diffusion. From Coreâ^'Shell Templates to Nanorods and Nanotubes. Crystal Growth and Design, 2011, 11, 1394-1401.	3.0	28
29	Synthesis of Y-doped BaCeO3 nanopowders by a modified solid-state process and conductivity of dense fine-grained ceramics. Solid State Ionics, 2009, 180, 168-174.	2.7	26
30	Nanoparticle laden interfacial layers and application to foams and solid foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 132-140.	4.7	26
31	Ferroelectric hollow particles obtained by solid-state reaction. Nanotechnology, 2008, 19, 225602.	2.6	25
32	Nanocrystalline oxide (Y2O3, Dy2O3, ZrO2, NiO) coatings on BaTiO3 submicron particles by precipitation. Journal of Nanoparticle Research, 2010, 12, 623-633.	1.9	19
33	Novel magnetoelectric ceramic composites by control of the interface reactions in Fe2O3@BaTiO3 core-shell structures. Journal of Applied Physics, 2014, 116, .	2.5	19
34	Preparation of Bi ₂ Fe ₄ O ₉ particles by hydrothermal synthesis and functional properties. Phase Transitions, 2013, 86, 726-736.	1.3	15
35	Improved dielectric properties of poly(vinylidene fluoride)– <scp>BaTiO₃</scp> composites by solventâ€free processing. Journal of Applied Polymer Science, 2021, 138, 50049.	2.6	11
36	Design tunable materials: Ferroelectric-antiferroelectric composite with core-shell structure. Applied Physics Letters, 2014, 105, .	3.3	9

#	Article	IF	CITATIONS
37	Influence of stoichiometry on the dielectric and ferroelectric properties of the tunable (Ba,Sr)TiO3 ceramics investigated by First Order Reversal Curves method. Journal of the European Ceramic Society, 2006, 26, 2915-2921.	5.7	8
38	Positive Temperature Coefficient of Electrical Resistivity below 150 K in Barium Strontium Titanate. Journal of the American Ceramic Society, 2004, 87, 756-758.	3.8	6
39	Revealing the Role of the Intermediates during the Synthesis of BaTi5O11. Inorganic Chemistry, 2019, 58, 8120-8129.	4.0	4
40	Raman spectroscopic study of layered quaternary ferrite Ba12Fe28Ti15O84. Phase Transitions, 2013, 86, 661-669.	1.3	2
41	Ferroelectricity in Bi <inf>4</inf> Ti <inf>3</inf> O <inf>12</inf> nanorods. , 2011, , .		0