
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7991897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low preâ€stimulus EEG alpha power amplifies visual awareness but not visual sensitivity. European Journal of Neuroscience, 2022, 55, 3125-3140.	2.6	41
2	Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLoS ONE, 2021, 16, e0255424.	2.5	12
3	Editorial for special issue on neglect rehabilitation. Neuropsychological Rehabilitation, 2021, , 1-10.	1.6	2
4	Non-invasive brain stimulation in Stroke patients (NIBS): A prospective randomized open blinded end-point (PROBE) feasibility trial using transcranial direct current stimulation (tDCS) in post-stroke hemispatial neglect. Neuropsychological Rehabilitation, 2020, 31, 1-27.	1.6	11
5	Social perception drives eye-movement related brain activity: Evidence from pro- and anti-saccades to faces. Neuropsychologia, 2020, 139, 107360.	1.6	11
6	Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex, 2019, 117, 168-181.	2.4	15
7	Intra- and inter-task reliability of spatial attention measures in healthy older adults. PLoS ONE, 2019, 14, e0226424.	2.5	7
8	Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect. Neuropsychological Rehabilitation, 2019, 29, 251-272.	1.6	22
9	Alpha power gating of early visual information inferred using an iconic memory task. Journal of Vision, 2019, 19, 246d.	0.3	0
10	Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex, 2018, 98, 84-101.	2.4	11
11	Trialâ€byâ€trial coâ€variation of preâ€stimulus <scp>EEG</scp> alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects. European Journal of Neuroscience, 2018, 48, 2566-2584.	2.6	52
12	Right-lateralised lane keeping in young and older British drivers. PLoS ONE, 2018, 13, e0203549.	2.5	9
13	Tribute to Clyn W. Humphreys, 1954–2016. Cortex, 2018, 107, 1-3.	2.4	1
14	Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study. NeuroImage, 2017, 153, 139-151.	4.2	40
15	No Interaction between tDCS Current Strength and Baseline Performance: A Conceptual Replication. Frontiers in Neuroscience, 2017, 11, 664.	2.8	12
16	Investigating the neural correlates of automatic attention shifts in electroencephalography. Journal of Vision, 2017, 17, 384.	0.3	0
17	Comparison of 3 intervention approaches into the rehabilitation of hemispatial neglect: an evaluation of short and long term recovery. Journal of Vision, 2016, 16, 48.	0.3	0
18	Age-related changes in the hemispheric lateralisation of pre-stimulus alpha Journal of Vision, 2016, 16, 1270.	0.3	0

#	Article	IF	CITATIONS
19	Intra- and Inter-Task Reliability of Spatial Attention Measures in Pseudoneglect. PLoS ONE, 2015, 10, e0138379.	2.5	46
20	Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex, 2015, 69, 152-165.	2.4	127
21	Effects of non-invasive brain stimulation on attention: Current debates, cognitive studies and novel clinical applications. Neuropsychologia, 2015, 74, 1-6.	1.6	10
22	The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia, 2015, 74, 108-119.	1.6	105
23	Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated. PLoS ONE, 2015, 10, e0144082.	2.5	5
24	A rightward shift in the visuospatial attention vector with healthy aging. Frontiers in Aging Neuroscience, 2014, 6, 113.	3.4	56
25	Parieto-Occipital Cortex Shows Early Target Selection to Faces in a Reflexive Orienting Task. Cerebral Cortex, 2014, 24, 898-907.	2.9	11
26	On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length. NeuroImage, 2014, 86, 370-380.	4.2	63
27	Spatial attention: Differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes. Neuropsychologia, 2013, 51, 2747-2756.	1.6	49
28	Stimulus- and state-dependence of systematic bias in spatial attention: Additive effects of stimulus-size and time-on-task. Cortex, 2013, 49, 827-836.	2.4	51
29	Visuospatial neglect in action. Neuropsychologia, 2012, 50, 1018-1028.	1.6	38
30	Attention in action: Evidence from on-line corrections in left visual neglect. Neuropsychologia, 2012, 50, 1124-1135.	1.6	14
31	The Role of Right Temporal Lobe Structures in Off-line Action: Evidence from Lesion-Behavior Mapping in Stroke Patients. Cerebral Cortex, 2011, 21, 2751-2761.	2.9	22
32	Memory-guided saccade processing in visual form agnosia (patient DF). Experimental Brain Research, 2010, 200, 109-116.	1.5	15
33	Looking away from faces: Influence of high-level visual processes on saccade programming. Journal of Vision, 2010, 10, 1-10.	0.3	22
34	Long Term Improvements in Activities of Daily Living in Patients with Hemispatial Neglect. Behavioural Neurology, 2010, 23, 237-239.	2.1	14
35	The Automatic Pilot of the Hand is Unbalanced by Visual Neglect. Behavioural Neurology, 2010, 23, 249-251.	2.1	3
36	Long term improvements in activities of daily living in patients with hemispatial neglect. Behavioural Neurology, 2010, 23, 237-9.	2.1	10

#	Article	IF	CITATIONS
37	The automatic pilot of the hand is unbalanced by visual neglect. Behavioural Neurology, 2010, 23, 249-51.	2.1	1
38	No Neglect-Specific Deficits in Reaching Tasks. Cerebral Cortex, 2009, 19, 2616-2624.	2.9	28
39	Immediate and delayed reaching in hemispatial neglect. Neuropsychologia, 2009, 47, 1563-1572.	1.6	20
40	The neural basis of visuomotor deficits in hemispatial neglect. Neuropsychologia, 2009, 47, 2149-2153.	1.6	24
41	Non-lateralised deficits in anti-saccade performance in patients with hemispatial neglect. Neuropsychologia, 2009, 47, 2488-2495.	1.6	13
42	Modelling contralesional movement slowing after unilateral brain damage. Neuroscience Letters, 2009, 452, 1-4.	2.1	3
43	Age-related differences in corrected and inhibited pointing movements. Experimental Brain Research, 2008, 185, 1-10.	1.5	26
44	Effects of aging and exposure duration on perceptual biases in chimeric face processing. Cortex, 2008, 44, 665-672.	2.4	28
45	Impaired orientation processing in hemispatial neglect. NeuroReport, 2007, 18, 457-460.	1.2	5
46	Non-lateralised deficits of drawing production in hemispatial neglect. Brain and Cognition, 2007, 64, 150-157.	1.8	8
47	Hemispheric asymmetries in image-specific and abstractive priming of famous faces: Evidence from reaction times and event-related brain potentials. Neuropsychologia, 2007, 45, 2910-2921.	1.6	34
48	Impairments of oculomotor control in a patient with a right temporo-parietal lesion. Cognitive Neuropsychology, 2006, 23, 990-999.	1.1	13
49	Characterizing exploration behavior in spatial neglect: Omissions and repetitive search. Brain Research, 2006, 1118, 106-115.	2.2	8
50	Perceptual biases in chimeric face processing: Eye-movement patterns cannot explain it all. Brain Research, 2006, 1124, 96-99.	2.2	41
51	Evidence for a systematic component within scan paths in visual search. Visual Cognition, 2006, 14, 704-715.	1.6	99
52	Does inversion abolish the left chimeric face processing advantage?. NeuroReport, 2005, 16, 1991-1993.	1.2	27
53	Are the perceptual biases found in chimeric face processing reflected in eye-movement patterns?. Neuropsychologia, 2005, 43, 52-59.	1.6	129
54	Perceptual and Premotor Neglect: Is there an Ideal Task to Categorise Patients?. Cortex, 2004, 40, 323-328.	2.4	21

#	Article	IF	CITATIONS
55	Comparison of the Milner and Bisiach Landmark Tasks: can Neglect Patients be Classified Consistently?. Cortex, 2004, 40, 659-665.	2.4	13
56	Eye-movement patterns do not mediate size distortion effects in hemispatial neglect: looking without seeing. Neuropsychologia, 2003, 41, 1114-1121.	1.6	15
57	The effects of visuomotor feedback training on the recovery of hemispatial neglect symptoms: assessment of a 2-week and follow-up intervention. Neuropsychologia, 2003, 41, 886-893.	1.6	44
58	ls Grasping Impaired in Hemispatial Neglect?. Behavioural Neurology, 2002, 13, 17-28.	2.1	31
59	Co-ordination of bimanual movements in a centrally deafferented patient executing open loop reach-to-grasp movements. Acta Psychologica, 2002, 110, 231-246.	1.5	12
60	Effects of visible and invisible cueing on line bisection and Landmark performance in hemispatial neglect. Neuropsychologia, 2002, 40, 282-290.	1.6	30
61	Manual responses and saccades in chronic and recovered hemispatial neglect: a study using visual search. Neuropsychologia, 2002, 40, 705-717.	1.6	30
62	Categorisation of †perceptual' and †premotor' neglect patients across different tasks: is there strong evidence for a dichotomy?. Neuropsychologia, 2002, 40, 1387-1395.	1.6	47
63	First Saccades Reveal Biases in Recovered Neglect. Neurocase, 2002, 8, 306-313.	0.6	2
64	Impaired size processing for single objects after hemispatial neglect. NeuroReport, 2001, 12, 3747-3750.	1.2	12
65	Illusion processing in hemispatial neglect. Neuropsychologia, 2001, 39, 611-625.	1.6	24
66	Refixation frequency and memory mechanisms in visual search. Current Biology, 2000, 10, 1209-1212.	3.9	201
67	Effects of visible and invisible cueing procedures on perceptual judgments in young and elderly subjects. Neuropsychologia, 2000, 38, 22-31.	1.6	35
68	Reaching movements may reveal the distorted topography of spatial representations after neglect. Neuropsychologia, 2000, 38, 500-507.	1.6	46
69	Residual perceptual distortion in recovered hemispatial neglect. Neuropsychologia, 1999, 37, 745-750.	1.6	31
70	Visual size processing in spatial neglect. Experimental Brain Research, 1998, 123, 192-200.	1.5	54
71	Grip force scaling after hemispatial neglect. NeuroReport, 1997, 8, 3837-3840.	1.2	7
72	Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 1996, 34, 329-337.	1.6	259

MONIKA HARVEY

#	Article	IF	CITATIONS
73	Distortion of size perception in visuospatial neglect. Current Biology, 1995, 5, 85-89.	3.9	164
74	Psychic paralysis of gaze, optic ataxia, and spatial disorder of attention. Cognitive Neuropsychology, 1995, 12, 265-281.	1.1	68
75	An Investigation of Hemispatial Neglect Using the Landmark Task. Brain and Cognition, 1995, 27, 59-78.	1.8	221
76	Bálint's patient. Cognitive Neuropsychology, 1995, 12, 261-264.	1.1	119
77	Differential Effects of Line Length on Bisection Judgements in Hemispatial Neglect. Cortex, 1995, 31, 711-722.	2.4	53
78	Toward a taxonomy of spatial neglect. Neuropsychological Rehabilitation, 1994, 4, 177-181.	1.6	11
79	Spatial Bias in Visually-Guided Reaching and Bisection Following Right Cerebral Stroke. Cortex, 1994, 30, 343-350.	2.4	52
80	Visually guided action and the "need to know― Behavioral and Brain Sciences, 1994, 17, 213-214.	0.7	3
81	Line bisection errors in visual neglect: Misguided action or size distortion?. Neuropsychologia, 1993, 31, 39-49.	1.6	267
82	To halve and to halve not: An analysis of line bisection judgements in normal subjects. Neuropsychologia, 1992, 30, 515-526.	1.6	313
83	Guidance of visual reaching with the aid of a TV monitor: The effects of monitor position and of left/right and up/down reversals of the image in relation to age. Neuropsychologia, 1989, 27, 1383-1397.	1.6	2