
In-Yup Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7991861/publications.pdf Version: 2024-02-01

IN-YUD FON

#	Article	lF	CITATIONS
1	Improved performance of poly(styreneâ€ <i>co</i> â€butadiene) using butadiene graphitic nanoplatelets. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
2	Neohexene graphitic nanoplatelets for reinforced low-density polyethylene. Journal of Polymer Research, 2022, 29, 1.	1.2	3
3	Oxygen reduction reaction by metal-free catalysts. , 2022, , 241-275.		1
4	Electrochemical Catalysts for Green Hydrogen Energy. Advanced Energy and Sustainability Research, 2021, 2, 2100019.	2.8	4
5	Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Composites Communications, 2021, 27, 100896.	3.3	11
6	Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. Journal of Materials Research and Technology, 2021, 10, 662-670.	2.6	14
7	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	2.8	4
8	Influence of the Hydrophilic Surface of Nanofiber Support on the Performance of Hybrid Supercapacitors. Energies, 2021, 14, 7621.	1.6	6
9	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100
10	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
11	Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. Composites Science and Technology, 2020, 199, 108380.	3.8	11
12	Edgeâ€NF _{<i>x</i>} (<i>x</i> =1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. Batteries and Supercaps, 2020, 3, 928-935.	2.4	6
13	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy, 2019, 66, 104112.	8.2	13
14	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. Angewandte Chemie - International Edition, 2019, 58, 11670-11675.	7.2	9
15	Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019, 62, 419-425.	8.2	44
16	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. ACS Nano, 2019, 13, 5893-5899.	7.3	26
17	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	5.4	49
18	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 8438-8442.	7.2	196

#	Article	IF	CITATIONS
19	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie, 2018, 130, 8574-8578.	1.6	40
20	Boron-nitrogen-phosphorous doped graphene nanoplatelets for enhanced electrocatalytic activity. European Polymer Journal, 2018, 99, 511-517.	2.6	17
21	Direct and efficient conversion from low-quality graphite to high-quality graphene nanoplatelets. FlatChem, 2018, 12, 10-16.	2.8	6
22	Molybdenumâ€Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18158-18179.	1.7	46
23	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870330.	11.1	21
24	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
25	Comparative study of edge-functionalized graphene nanoplatelets as metal-free counter electrodes for highly efficient dye-sensitized solar cells. Materials Today Energy, 2018, 9, 67-73.	2.5	34
26	Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 2018, 23, 657.	1.7	43
27	A New Strategy for Outstanding Performance and Durability in Acidic Fuel Cells: A Small Amount Pt Anchored on Fe, N coâ€Doped Graphene Nanoplatelets. ChemElectroChem, 2018, 5, 2857-2862.	1.7	18
28	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
29	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	5.8	43
30	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
31	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	5.4	43
32	Oneâ€Pot Purification and Iodination of Waste Kish Graphite into Highâ€Quality Electrocatalyst. Particle and Particle Systems Characterization, 2017, 34, 1600426.	1.2	8
33	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	4.5	106
34	Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. Journal of Materials Chemistry A, 2017, 5, 21936-21946.	5.2	10
35	Ultrasonic Chemistry: Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems (Adv. Mater. 47/2017). Advanced Materials, 2017, 29, 1770339.	11.1	4
36	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. Nature Communications, 2017, 8, 1599.	5.8	12

#	Article	IF	CITATIONS
37	Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. Advanced Materials, 2017, 29, 1702747.	11.1	27
38	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Materials, 2017, 4, 014002.	2.0	15
39	Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy, 2016, 26, 233-240.	8.2	105
40	Edge-selectively antimony-doped graphene nanoplatelets as an outstanding counter electrode with an unusual electrochemical stability for dye-sensitized solar cells employing cobalt electrolytes. Journal of Materials Chemistry A, 2016, 4, 9029-9037.	5.2	33
41	Metalloid tellurium-doped graphene nanoplatelets as ultimately stable electrocatalysts for cobalt reduction reaction in dye-sensitized solar cells. Nano Energy, 2016, 30, 867-876.	8.2	49
42	Fe@Nâ€Graphene Nanoplateletâ€Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2016, 3, 1500205.	5.6	47
43	Energy Conversion: Fe@Nâ€Graphene Nanoplateletâ€Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction (Adv. Sci. 1/2016). Advanced Science, 2016, 3, .	5.6	0
44	Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. Science Advances, 2016, 2, e1501459.	4.7	88
45	Cloud-like graphene nanoplatelets on Nd _{0.5} Sr _{0.5} CoO _{3â~îr} nanorods as an efficient bifunctional electrocatalyst for hybrid Li–air batteries. Journal of Materials Chemistry A, 2016, 4, 2122-2127.	5.2	54
46	Scalable Production of Edgeâ€Functionalized Graphene Nanoplatelets via Mechanochemical Ballâ€Milling. Advanced Functional Materials, 2015, 25, 6961-6975.	7.8	135
47	Antimony-doped graphene nanoplatelets. Nature Communications, 2015, 6, 7123.	5.8	77
48	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1328-1328.	7.8	6
49	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dyeâ€Sensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	7.8	174
50	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5.8	923
51	Mechanochemically driven iodination of activated charcoal for metal-free electrocatalyst for fuel cells and hybrid Li-air cells. Carbon, 2015, 93, 465-472.	5.4	12
52	High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy, 2015, 13, 336-345.	8.2	85
53	Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage. Langmuir, 2015, 31, 5676-5683.	1.6	33
54	Exploration of the Effective Location of Surface Oxygen Defects in Grapheneâ€Based Electrocatalysts for Allâ€Vanadium Redoxâ€Flow Batteries. Advanced Energy Materials, 2015, 5, 1401550.	10.2	107

#	Article	IF	CITATIONS
55	Graphene Nanoplatelets Doped with N at its Edges as Metalâ€Free Cathodes for Organic Dye‧ensitized Solar Cells. Advanced Materials, 2014, 26, 3055-3062.	11.1	140
56	Direct Solvothermal Synthesis of B/Nâ€Doped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	7.2	61
57	Graphene Phosphonic Acid as an Efficient Flame Retardant. ACS Nano, 2014, 8, 2820-2825.	7.3	169
58	Edgeâ€Selectively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ballâ€Milling and Used as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7317-7323.	11.1	160
59	Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 1044-1052.	15.6	82
60	Edge-iodine/sulfonic acid-functionalized graphene nanoplatelets as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 8690-8695.	5.2	45
61	Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.	7.3	213
62	Solvent-free mechanochemical reduction of graphene oxide. Carbon, 2014, 77, 501-507.	5.4	43
63	Edge‣electively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537
64	Mechanochemically driven solid-state Diels–Alder reaction of graphite into graphene nanoplatelets. Chemical Science, 2013, 4, 4273.	3.7	49
65	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
66	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	6.6	113
67	Edge electively Functionalized Graphene Nanoplatelets. Chemical Record, 2013, 13, 224-238.	2.9	31
68	N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 5243-5250.	7.3	238
69	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
70	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	1.6	204
71	Scalable Synthesis of Pure and Stable Hexaaminobenzene Trihydrochloride. Synlett, 2013, 24, 246-248.	1.0	23
72	Strain-induced delamination of edge-grafted graphite. Chemical Communications, 2012, 48, 11109.	2.2	4

#	Article	IF	CITATIONS
73	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	3.3	595
74	Edge-Exfoliated Graphites for Facile Kinetics of Delithiation. ACS Nano, 2012, 6, 10770-10775.	7.3	27
75	Water-Dispersible, Sulfonated Hyperbranched Poly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen Reduction Catalysts. ACS Nano, 2012, 6, 6345-6355.	7.3	57
76	Stability of multi-walled carbon nanotubes in commonly used acidic media. Carbon, 2012, 50, 1465-1476.	5.4	48
77	Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
78	Highly Conducting and Flexible Few-Walled Carbon Nanotube Thin Film. ACS Nano, 2011, 5, 2324-2331.	7.3	54
79	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
80	Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite. ACS Nano, 2011, 5, 4974-4980.	7.3	98
81	Wedging graphite into graphene and graphene-like platelets by dendritic macromolecules. Journal of Materials Chemistry, 2011, 21, 7820.	6.7	27
82	Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. Journal of Materials Chemistry, 2011, 21, 7337.	6.7	84
83	Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. Electrochimica Acta, 2011, 56, 10023-10031.	2.6	22
84	Nanocomposite prepared from <i>in situ</i> grafting of polypyrrole to aminobenzoylâ€functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A, 2011, 49, 2529-2537.	2.5	35
85	Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel–Crafts Acylation Reaction in Poly(Phosphoric Acid). Nanoscale Research Letters, 2010, 5, 1686-1691.	3.1	17
86	Multifunctional poly(2,5â€benzimidazole)/carbon nanotube composite films. Journal of Polymer Science Part A, 2010, 48, 1067-1078.	2.5	21
87	Synthesis and electrical properties of polyaniline/polyaniline grafted multiwalled carbon nanotube mixture via <i>in situ</i> static interfacial polymerization. Journal of Polymer Science Part A, 2010, 48, 1962-1972.	2.5	32
88	Grafting of polyaniline onto the surface of 4â€aminobenzoylâ€functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A, 2010, 48, 3103-3112.	2.5	37
89	"Direct―grafting of linear macromolecular "wedges―to the edge of pristine graphite to prepare edge-functionalized graphene-based polymer composites. Journal of Materials Chemistry, 2010, 20, 10936.	6.7	44
90	High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chemical Communications, 2010, 46, 6320.	2.2	109

#	Article	IF	CITATIONS
91	Sponge Behaviors of Functionalized Few-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 14868-14875.	1.5	10
92	Selfâ€controlled synthesis of hyperbranched poly(etherâ€ketone)s from A ₂ + B ₃ approach in poly(phosphoric acid). Journal of Polymer Science Part A, 2009, 47, 3326-3336.	2.5	6
93	Nanocomposites derived from <i>in situ</i> grafting of linear and hyperbranched poly(etherâ€ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes. Journal of Polymer Science Part A, 2008, 46, 3471-3481.	2.5	41
94	Semimetallic Transport in Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes. Macromolecules, 2008, 41, 7423-7432.	2.2	56
95	Synthesis of linear and hyperbranched poly(etherketone)s containing flexible oxyethylene spacers. Journal of Polymer Science Part A, 2007, 45, 5112-5122.	2.5	8
96	Functionalization of Carbon Nanotubes. , 0, , .		43
97	Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction. , 0, , .		2