
Long Qie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7991644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Stretchable Ionic Conductive Elastomer for Highâ€Arealâ€Capacity Lithiumâ€Metal Batteries. Energy and Environmental Materials, 2022, 5, 337-343.	7.3	16
2	Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition. Nano Energy, 2022, 93, 106836.	8.2	25
3	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
4	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, e202114789.	1.6	8
5	A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Materials, 2022, 47, 491-499.	9.5	55
6	Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nature Communications, 2022, 13, .	5.8	174
7	In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chemical Engineering Journal, 2022, 448, 137653.	6.6	18
8	Redirected Zn Electrodeposition by an Anti orrosion Elastic Constraint for Highly Reversible Zn Anodes. Advanced Functional Materials, 2021, 31, 2001867.	7.8	216
9	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
10	Editorial: Nanocarbons: Basics and Advanced Applications. Frontiers in Chemistry, 2021, 9, 657941.	1.8	0
11	The Failure Mechanism of Lithium-Sulfur Batteries under Lean-Ether-Electrolyte Conditions. Energy Storage Materials, 2021, 38, 255-261.	9.5	37
12	A long-life and safe lithiated graphite-selenium cell with competitive gravimetric and volumetric energy densities. Journal of Energy Chemistry, 2021, 60, 556-563.	7.1	4
13	Anti orrosion Elastic Constraints: Redirected Zn Electrodeposition by an Antiâ€Corrosion Elastic Constraint for Highly Reversible Zn Anodes (Adv. Funct. Mater. 2/2021). Advanced Functional Materials, 2021, 31, 2170009.	7.8	2
14	Twoâ€Plateau Liâ€5e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie - International Edition, 2020, 59, 13908-13914.	7.2	26
15	Twoâ€Plateau Liâ€5e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie, 2020, 132, 14012-14018.	1.6	9
16	Semiâ€Flooded Sulfur Cathode with Ultralean Absorbed Electrolyte in Li–S Battery. Advanced Science, 2020, 7, 1903168.	5.6	40
17	Enhancing the Interfacial Ionic Transport via <i>in Situ</i> 3D Composite Polymer Electrolytes for Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 7200-7207.	2.5	15
18	A "dendrite-eating―separator for high-areal-capacity lithium-metal batteries. Energy Storage Materials, 2020, 31, 181-186.	9.5	71

Long Qie

#	Article	IF	CITATIONS
19	Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials, 2020, 27, 279-296.	9.5	114
20	Facile Synthesis of Sn/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites with Superb Lithium Storage Properties. Nanomaterials, 2019, 9, 1084.	1.9	13
21	Manipulating Sulfur Mobility Enables Advanced Li-S Batteries. Matter, 2019, 1, 1047-1060.	5.0	63
22	Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nature Energy, 2019, 4, 374-382.	19.8	449
23	Highly Rechargeable Lithiumâ€CO ₂ Batteries with a Boron―and Nitrogenâ€Codoped Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.	7.2	260
24	Highly Rechargeable Lithium CO ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.	1.6	24
25	Gravimetric and volumetric energy densities of lithium-sulfur batteries. Current Opinion in Electrochemistry, 2017, 6, 92-99.	2.5	100
26	A High Energy Lithiumâ€5ulfur Battery with Ultrahigh‣oading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials, 2016, 6, 1502459.	10.2	282
27	An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. Nano Energy, 2016, 26, 224-232.	8.2	95
28	High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters, 2016, 1, 46-51.	8.8	109
29	Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium–sulfur batteries with superior stability. Chemical Communications, 2016, 52, 10964-10967.	2.2	42
30	VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors. Scientific Reports, 2015, 5, 16012.	1.6	63
31	A Facile Layerâ€by‣ayer Approach for Highâ€Arealâ€Capacity Sulfur Cathodes. Advanced Materials, 2015, 27, 1694-1700.	11.1	270
32	Expandable-graphite-derived graphene for next-generation battery chemistries. Journal of Power Sources, 2015, 284, 60-67.	4.0	25
33	Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-lon Batteries. Scientific Reports, 2015, 5, 9254.	1.6	255
34	Sulfurâ€Doped Carbon with Enlarged Interlayer Distance as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2015, 2, 1500195.	5.6	446
35	Facile synthesis of sandwiched Zn ₂ GeO ₄ –graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Nanoscale, 2014, 6, 924-930.	2.8	90
36	MOFâ€Đerived Porous ZnO/ZnFe ₂ O ₄ /C Octahedra with Hollow Interiors for Highâ€Rate Lithiumâ€ion Batteries. Advanced Materials, 2014, 26, 6622-6628.	11.1	703

Long Qie

#	Article	IF	CITATIONS
37	Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12733.	5.2	582
38	Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 559, 5-10.	2.8	66
39	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithiumâ€Storage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	1.7	83
40	High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106, 320-326.	2.6	160
41	Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy, 2013, 2, 412-418.	8.2	145
42	Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2497.	15.6	1,053
43	Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon, 2013, 55, 328-334.	5.4	589
44	Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5320-5328.	1.0	28
45	Insight into Fe Incorporation in Li ₃ V ₂ (PO ₄) ₃ /C Cathode Material. Journal of the Electrochemical Society, 2012, 159, A1573-A1578.	1.3	42
46	Revisit of Polypyrrole as Cathode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2012, 159, A1624-A1629.	1.3	77
47	Controllable Synthesis of Hollow Bipyramid β-MnO ₂ and Its High Electrochemical Performance for Lithium Storage. ACS Applied Materials & Interfaces, 2012, 4, 3047-3053.	4.0	78
48	Electrochemical performance in Na-incorporated nonstoichiometric LiFePO4/C composites with controllable impurity phases. Electrochimica Acta, 2012, 62, 416-423.	2.6	25
49	Nitrogenâ€Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.	11.1	1,541
50	SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1431-1434.	2.3	44
51	Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta, 2011, 56, 2689-2695.	2.6	77