Daniel M Mulvihill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7991355/publications.pdf

Version: 2024-02-01

759233 888059 21 602 12 17 citations h-index g-index papers 21 21 21 350 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gecko-inspired dry adhesives for heritage conservation $\hat{a}\in$ tackling the surface roughness with empirical testing and finite element modelling. Journal of Adhesion Science and Technology, 2023, 37, 1091-1116.	2.6	1
2	Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review. Chemical Engineering Journal Advances, 2022, 9, 100237.	5.2	65
3	Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Advances, 2022, 12, 10545-10572.	3.6	37
4	Finite element modelling of the single fibre composite fragmentation test with comparison to experiments. Journal of Composite Materials, 2022, 56, 2765-2778.	2.4	5
5	Textile Triboelectric Nanogenerators as Self Powered Wearable Temperature Sensors. , 2022, , .		1
6	Friction of flat and micropatterned interfaces with nanoscale roughness. Tribology International, 2021, 153, 106563.	5.9	7
7	Enhancing strength and toughness of adhesive joints via micro-structured mechanical interlocking. International Journal of Adhesion and Adhesives, 2021, 105, 102775.	2.9	18
8	Origin of the contact force-dependent response of triboelectric nanogenerators. Nano Energy, 2021, 83, 105829.	16.0	70
9	A wide range self-powered flexible pressure sensor based on triboelectric nanogenerator., 2021,,.		3
10	Flexible Inserts for Injection Molding of Complex Microâ€Structured Polymer Components. Macromolecular Materials and Engineering, 2021, 306, 2100223.	3.6	6
11	Tailorable and Repeatable Normal Contact Stiffness via Micropatterned Interfaces. Tribology Letters, 2021, 69, 1.	2.6	6
12	Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy, 2021, 90, 106600.	16.0	52
13	Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sensors Journal, 2020, 20, 6856-6862.	4.7	34
14	A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy, 2020, 76, 105067.	16.0	57
15	Induction melt thermoforming of advanced multi-axial thermoplastic composite laminates. Journal of Manufacturing Processes, 2020, 60, 673-683.	5.9	5
16	Frictional behaviour of non-crimp fabrics (NCFs) in contact with a forming tool. Tribology International, 2018, 121, 71-77.	5.9	12
17	Enhanced Triboelectric Nanogenerator Performance via an Optimised Low Permittivity, Low Thickness Substrate. , 2018, , .		2
18	Effect of tool surface topography on friction with carbon fibre tows for composite fabric forming. Composites Part A: Applied Science and Manufacturing, 2017, 93, 199-206.	7.6	23

DANIEL M MULVIHILL

#	Article	IF	CITATIONS
19	Friction of carbon fibre tows. Composites Part A: Applied Science and Manufacturing, 2017, 93, 185-198.	7.6	41
20	An elastic–plastic asperity interaction model for sliding friction. Tribology International, 2011, 44, 1679-1694.	5.9	94
21	Measurements of pressure and area dependent tangential contact stiffness between rough surfaces using digital image correlation. Tribology International, 2011, 44, 1188-1198.	5.9	63