Sandip Murarka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7990911/publications.pdf

Version: 2024-02-01

33 2,180 2
papers citations h-in

331670 377865 34 h-index g-index

44 44 all docs docs citations

44 times ranked 1959 citing authors

#	Article	IF	CITATIONS
1	Multicomponent Synthesis of Biologically Relevant <i>S</i> â€Diarylmethane Dithiocarbamates Using <i>p</i> â€Quinone Methides. Advanced Synthesis and Catalysis, 2022, 364, 1549-1554.	4.3	9
2	Development of S-aryl dithiocarbamate derived novel antiproliferative compound exhibiting tubulin bundling. Bioorganic and Medicinal Chemistry, 2022, 68, 116874.	3.0	7
3	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	11.2	190
4	Lateâ€Stage Alkylation of Heterocycles Using <i>N</i> â€(Acyloxy)phthalimides. Chemistry - an Asian Journal, 2021, 16, 879-889.	3.3	29
5	Organophotoredoxâ€Catalyzed Lateâ€6tage Functionalization of Heterocycles. Asian Journal of Organic Chemistry, 2021, 10, 1848-1860.	2.7	32
6	Multicomponent Synthesis of Biologically Relevant <i>S</i> Aryl Dithiocarbamates Using Diaryliodonium Salts. Organic Letters, 2021, 23, 6401-6406.	4.6	42
7	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	4.5	30
8	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chemical Communications, 2021, 57, 13130-13133.	4.1	22
9	Organophotoredoxâ€Catalyzed Cascade Radical Annulation of 2â€(Allyloxy)arylaldehydes with <i>N</i> â€(acyloxy)phthalimides: Towards Alkylated Chromanâ€4â€one Derivatives. Chemistry - an Asian Journal, 2020, 15, 568-572.	3.3	36
10	Late stage functionalization of heterocycles using hypervalent iodine(<scp>iii</scp>) reagents. Organic and Biomolecular Chemistry, 2019, 17, 6326-6341.	2.8	63
11	PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas. International Journal of Cancer, 2019, 144, 767-776.	5.1	24
12	<i>N</i> â€(Acyloxy)phthalimides as Redoxâ€Active Esters in Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1735-1753.	4.3	294
13	Metal-Catalyzed Oxidative Coupling of Ketones and Ketone Enolates. Synthesis, 2018, 50, 2150-2162.	2.3	22
14	A PDE6δâ€KRas Inhibitor Chemotype with up to Seven Hâ€Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2. Angewandte Chemie - International Edition, 2017, 56, 2423-2428.	13.8	78
15	A PDE6δâ€KRas Inhibitor Chemotype with up to Seven Hâ€Bonds and Picomolar Affinity that Prevents Efficient Inhibitor Release by Arl2. Angewandte Chemie, 2017, 129, 2463-2468.	2.0	6
16	Covalent Protein Labeling at Glutamic Acids. Cell Chemical Biology, 2017, 24, 589-597.e5.	5.2	67
17	Biology-Oriented Synthesis of Decahydro-4,8-epoxyazulene Scaffolds. Synlett, 2017, 28, 2918-2922.	1.8	5
18	Development of Pyridazinone Chemotypes Targeting the PDEδ Prenyl Binding Site. Chemistry - A European Journal, 2017, 23, 6083-6093.	3.3	26

#	Article	IF	Citations
19	Identification of pyrazolopyridazinones as PDE $\hat{\Gamma}$ inhibitors. Nature Communications, 2016, 7, 11360.	12.8	137
20	Biology-Oriented Synthesis of 3,3-Spiro(2-tetrahydrofuranyl)oxindoles. Synthesis, 2016, 49, 87-95.	2.3	5
21	TEMPO-mediated homocoupling of aryl Grignard reagents: mechanistic studies. Organic and Biomolecular Chemistry, 2015, 13, 2762-2767.	2.8	21
22	Oxidative Heterocycle Formation Using Hypervalent Iodine(III) Reagents. Topics in Current Chemistry, 2015, 373, 75-104.	4.0	31
23	Rhodium(II) atalyzed Enantioselective Synthesis of Troponoids. Angewandte Chemie - International Edition, 2015, 54, 7653-7656.	13.8	18
24	Structure Guided Design and Kinetic Analysis of Highly Potent Benzimidazole Inhibitors Targeting the PDEÎ' Prenyl Binding Site. Journal of Medicinal Chemistry, 2014, 57, 5435-5448.	6.4	60
25	Phenyl Hydrazine as Initiator for Direct Arene C–H Arylation via Base Promoted Homolytic Aromatic Substitution. Organic Letters, 2013, 15, 6102-6105.	4.6	109
26	Transition-metal-free Oxidative Coupling Reactions for the Formation of C–C and C–N Bonds Mediated by TEMPO and its Derivatives. Chimia, 2012, 66, 413-417.	0.6	18
27	Radical/Anionic S _{RN} 1‶ype Polymerization for Preparation of Oligoarenes. Angewandte Chemie - International Edition, 2012, 51, 12362-12366.	13.8	35
28	Zinc Triflate Catalyzed Aerobic Cross-Dehydrogenative Coupling (CDC) of Alkynes with Nitrones: A New Entry to Isoxazoles. Organic Letters, 2011, 13, 2746-2749.	4.6	59
29	Transition Metalâ€Free TEMPOâ€Catalyzed Oxidative Cross―Coupling of Nitrones with Alkynylâ€Grignard Reagents. Advanced Synthesis and Catalysis, 2011, 353, 2708-2714.	4.3	39
30	Transition-Metal-Free Sonogashira-Type Coupling of <i>ortho</i> -Substituted Aryl and Alkynyl Grignard Reagents by Using 2,2,6,6-Tetramethylpiperidine- <i>N</i> -oxyl Radical as an Oxidant. Organic Letters, 2010, 12, 3878-3881.	4.6	61
31	Lewis Acid Catalyzed Formation of Tetrahydroquinolines via an Intramolecular Redox Process. Organic Letters, 2009, 11, 129-132.	4.6	182
32	Facile Formation of Cyclic Aminals through a BrÃ, nsted Acid-Promoted Redox Process. Journal of Organic Chemistry, 2009, 74, 419-422.	3.2	180
33	Catalytic Enantioselective Intramolecular Redox Reactions: Ring-Fused Tetrahydroquinolines. Journal of the American Chemical Society, 2009, 131, 13226-13227.	13.7	228