Wibren D Oosterbaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7990069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic phototransistors using poly(3-hexylthiophene) nanofibres. Nanotechnology, 2015, 26, 065201.	2.6	31
2	On the Relation between Morphology and FET Mobility of Poly(3â€alkylthiophene)s at the Polymer/SiO ₂ and Polymer/Air Interface. Advanced Functional Materials, 2014, 24, 1994-2004.	14.9	17
3	Poly(3-alkylthiophene) nanofibers for optoelectronic devices. Journal of Materials Chemistry C, 2014, 2, 5730.	5.5	36
4	Scaling down of organic complementary logic gates for compact logic on foil. Organic Electronics, 2014, 15, 1229-1234.	2.6	30
5	The Importance of Bridging Points for Charge Transport in Webs of Conjugated Polymer Nanofibers. Advanced Functional Materials, 2013, 23, 862-869.	14.9	28
6	Effect of Polymer Crystallinity in P3HT:PCBM Solar Cells on Band Gap Trap States and Apparent Recombination Order. Advanced Energy Materials, 2013, 3, 466-471.	19.5	48
7	Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cells. Organic Electronics, 2013, 14, 523-534.	2.6	22
8	Broadening the absorption of conjugated polymers by "click―functionalization with phthalocyanines. Dalton Transactions, 2011, 40, 3979.	3.3	32
9	CAFM on conjugated polymer nanofibers: Capable of assessing one fiber mobility. Organic Electronics, 2011, 12, 2084-2089.	2.6	21
10	Alkylâ€Chainâ€Lengthâ€Independent Hole Mobility via Morphological Control with Poly(3â€alkylthiophene) Nanofibers. Advanced Functional Materials, 2010, 20, 792-802.	14.9	89
11	Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: Influence on charge-transfer state energy and open-circuit voltage. Applied Physics Letters, 2009, 95, .	3.3	93
12	Effect of Alkyl Sideâ€Chain Length on Photovoltaic Properties of Poly(3â€alkylthiophene)/PCBM Bulk Heterojunctions. Advanced Functional Materials, 2009, 19, 3300-3306.	14.9	114
13	Controlling the morphology of nanofiber-P3HT:PCBM blends for organic bulk heterojunction solar cells. Organic Electronics, 2009, 10, 1248-1251.	2.6	61
14	Efficient formation, isolation and characterization of poly(3-alkylthiophene) nanofibres: probing order as a function of side-chain length. Journal of Materials Chemistry, 2009, 19, 5424.	6.7	128
15	The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends. , 2009, , .		0
16	The Relation Between Openâ€Circuit Voltage and the Onset of Photocurrent Generation by Chargeâ€Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2008, 18, 2064-2070.	14.9	503
17	Light-emitting organic field-effect transistor using an organic heterostructure within the transistor channel. Applied Physics Letters, 2006, 89, 223504.	3.3	36
18	Light-emitting organic field-effect transistors using an organic heterostructure inside the transistor		1

channel. , 2006, 6192, 71.

#	Article	IF	CITATIONS
19	Charge transfer interactions in polyesters with a donor-(Ï∫-bridge)-acceptor moiety in the repeating unit. Journal of Polymer Science Part A, 2004, 42, 4775-4784.	2.3	5
20	Photoinduced Charge Separation in Cyclohexylidene-Based Donorâ^'(σ-Bridge)â^'Acceptor Compounds â^' Building Blocks for Materials. European Journal of Organic Chemistry, 2003, 2003, 3117-3130.	2.4	11
21	Oligo(Cyclohexylidene)s and Oligo(Cyclohexyl)s as Bridges for Photoinduced Intramolecular Charge Separation and Recombination. Journal of Physical Chemistry A, 2003, 107, 3612-3624.	2.5	22
22	The occurrence of through-bond orbital interactions in an α,ω donor–acceptor substituted bi(cyclohexylidene) and bi(cyclohexyl). X-Ray diffraction, UV–Vis absorption and photoelectron spectroscopy, ab initio SCF-MO and natural bond orbital analysesâ€. Perkin Transactions II RSC, 2001, , 1066-1074.	1.1	11
23	N,N-Dialkylanilines:  The S1 State Absorption Spectrum and Efficient Intramolecular Tripletâ^'Triplet Energy Transfer to an Olefinic Bond. Journal of Physical Chemistry A, 2001, 105, 5984-5989.	2.5	9
24	Novel Polymer Electrolytes Based on Amorphous Poly(etherâ^'ester)s Containing 1,4,7-Trioxanonyl Main Chain Units. Ionic Conductivity versus Polymer Chain Mobility. Macromolecules, 1999, 32, 3314-3324.	4.8	43
25	Indirect determination of the composition of the coexisting phases in a demixed colloid polymer mixture. Journal of Chemical Physics, 1997, 106, 7777-7780.	3.0	40
26	Poly(3-alkylthiophene) Nanofibers for Photovoltaic Energy Conversion. Advanced Materials Research, 0, 324, 32-37.	0.3	4