
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7989792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low-cost push–pull syringe pump for continuous flow applications. HardwareX, 2022, 11, e00295.	2.2	5
2	Drug release from hydrogel-based matrix systems partially coated: experiments and modeling. Journal of Drug Delivery Science and Technology, 2021, 61, 102146.	3.0	10
3	Polymer–Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics, 2021, 13, 198.	4.5	35
4	Dynamometric measurements of hydrogels' mechanical spectra. Journal of Applied Polymer Science, 2021, 138, 50702.	2.6	1
5	Gelation process of carboxymethyl chitosan-zinc supramolecular hydrogel studied with fluorescence imaging and mathematical modelling. International Journal of Pharmaceutics, 2021, 605, 120804.	5.2	6
6	Thermal gelation modeling of a pluronicâ€alginate blend following coronary angioplasty. Journal of Applied Polymer Science, 2020, 137, 48539.	2.6	2
7	Hydrogel-based commercial products for biomedical applications: A review. International Journal of Pharmaceutics, 2020, 573, 118803.	5.2	246
8	Nanoliposomes in polymeric granules: Novel process strategy to produce stable and versatile delivery systems. Journal of Drug Delivery Science and Technology, 2020, 59, 101878.	3.0	2
9	Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics, 2020, 12, 445.	4.5	9
10	Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 299-306.	4.3	8
11	Microwave Treatments of Cereals: Effects on Thermophysical and Parenchymal-Related Properties. Foods, 2020, 9, 711.	4.3	11
12	Drug Delivery of siRNA Therapeutics. Pharmaceutics, 2020, 12, 178.	4.5	10
13	Engineering approaches for drug delivery systems production and characterization. International Journal of Pharmaceutics, 2020, 581, 119267.	5.2	8
14	Simil-Microfluidic Nanotechnology in Manufacturing of Liposomes as Hydrophobic Antioxidants Skin Release Systems. Cosmetics, 2020, 7, 22.	3.3	9
15	Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Advances, 2019, 9, 19800-19812.	3.6	28
16	Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics, 2019, 11, 360.	4.5	105
17	Coating of Nanolipid Structures by a Novel Simil-Microfluidic Technique: Experimental and Theoretical Approaches. Coatings, 2019, 9, 491.	2.6	13
18	Polymeric and lipid-based systems for controlled drug release: an engineering point of view. , 2019, , 267-304.		12

#	Article	IF	CITATIONS
19	Effect of binder and load solubility properties on HPMC granules produced by wet granulation process. Journal of Drug Delivery Science and Technology, 2019, 49, 513-520.	3.0	6
20	On the relevance of thermophysical characterization in the microwave treatment of legumes. Food and Function, 2018, 9, 1816-1828.	4.6	15
21	Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chemical Society Reviews, 2018, 47, 2357-2373.	38.1	172
22	A physiologically-based model to predict individual pharmacokinetics and pharmacodynamics of remifentanil. European Journal of Pharmaceutical Sciences, 2018, 111, 20-28.	4.0	10
23	HPMC granules by wet granulation process: Effect of vitamin load on physicochemical, mechanical and release properties. Carbohydrate Polymers, 2018, 181, 939-947.	10.2	17
24	Design and production of hybrid nanoparticles with polymeric-lipid shell–core structures: conventional and next-generation approaches. RSC Advances, 2018, 8, 34614-34624.	3.6	20
25	Wet-granulation process: phenomenological analysis and process parameters optimization. Powder Technology, 2018, 340, 411-419.	4.2	36
26	Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. European Journal of Pharmaceutical Sciences, 2018, 121, 16-28.	4.0	49
27	Modeling the mechanics and the transport phenomena in hydrogels. Computer Aided Chemical Engineering, 2018, 42, 357-383.	0.5	10
28	Engineering approaches in siRNA delivery. International Journal of Pharmaceutics, 2017, 525, 343-358.	5.2	21
29	PoroViscoElastic model to describe hydrogels' behavior. Materials Science and Engineering C, 2017, 76, 102-113.	7.3	37
30	Mathematical modelling of the drug release from an ensemble of coated pellets. British Journal of Pharmacology, 2017, 174, 1797-1809.	5.4	20
31	The rheological and crystallization behavior of polyoxymethylene. Polymer Testing, 2017, 57, 203-208.	4.8	12
32	Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study. International Journal of Pharmaceutics, 2017, 528, 705-713.	5.2	29
33	Delivery of siRNAs. International Journal of Pharmaceutics, 2017, 525, 291-292.	5.2	0
34	Determination of the release mechanism of Theophylline from pellets coated with Surelease ® —A water dispersion of ethyl cellulose. International Journal of Pharmaceutics, 2017, 528, 345-353.	5.2	20
35	Central composite design in HPMC granulation and correlations between product properties and process parameters. New Journal of Chemistry, 2017, 41, 6504-6513.	2.8	10
36	Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests. Carbohydrate Polymers, 2017, 167, 136-144.	10.2	28

#	Article	IF	CITATIONS
37	Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. International Journal of Pharmaceutics, 2017, 518, 50-58.	5.2	35
38	On the design of tailored liposomes for KRX29 peptide delivery. New Journal of Chemistry, 2017, 41, 11280-11290.	2.8	2
39	HPMC-based granules for prolonged release of phytostrengtheners in agriculture. Chemical Engineering Communications, 2017, 204, 1333-1340.	2.6	3
40	Modeling the modified drug release from curved shape drug delivery systems – Dome Matrix®. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 121, 24-31.	4.3	16
41	Mimicking the contractions of a human stomach and their effect on pharmaceuticals. Journal of Drug Delivery Science and Technology, 2017, 41, 454-461.	3.0	9
42	P.05.4: Cancer Progression Control in Inflammatory Bowel Disease: Cyclin D1 and E2F1 Sirna Delivery by New Vectors. Digestive and Liver Disease, 2017, 49, e157.	0.9	0
43	Modeling of the Behavior of Natural Polysaccharides Hydrogels for Bio-pharma Applications. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	0
44	Encapsulation of Active Molecules in Microparticles Based on Natural Polysaccharides. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	8
45	siRNA Delivery for Control of Cyclin D1 and E2F1 Expression in Crohn's Disease. Translational Medicine @ UniSa, 2017, 17, 22-30.	0.5	0
46	siRNA Delivery for Control of Cyclin D1 and E2F1 Expression in Crohn's Disease. Translational Medicine @ UniSa, 2017, 17, 25-33.	0.5	1
47	Editorial: New Trends in Gene Therapy: Multidisciplinary Approaches to siRNAs Controlled Delivery. Current Drug Delivery, 2017, 14, 156-157.	1.6	0
48	An Engineering Point of View on the Use of the Hydrogels for Pharmaceutical and Biomedical Applications. , 2016, , .		2
49	<i>In situ</i> coronary stent paving by <scp>P</scp> luronic <scp>F</scp> 127–alginate gel blends: Formulation and erosion tests. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1013-1022.	3.4	9
50	The effect of liver esterases and temperature on remifentanil degradation in vitro. International Journal of Pharmaceutics, 2016, 510, 359-364.	5.2	4
51	Gastrointestinal behavior and ADME phenomena: II. In silico simulation. Journal of Drug Delivery Science and Technology, 2016, 35, 165-171.	3.0	9
52	Ultrasonic atomization and polyelectrolyte complexation to produce gastroresistant shell–core microparticles. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
53	Gastrointestinal behavior and ADME phenomena: I. InÂvitro simulation. Journal of Drug Delivery Science and Technology, 2016, 35, 272-283.	3.0	10
54	Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT - Food Science and Technology, 2016, 69, 9-16.	5.2	73

#	Article	IF	CITATIONS
55	Definition and validation of a patient-individualized physiologically-based pharmacokinetic model. Computers and Chemical Engineering, 2016, 84, 394-408.	3.8	21
56	Iron Chelates: Production Processes and Reaction Evolution Analysis. Chemical Engineering Communications, 2016, 203, 861-869.	2.6	3
57	Modeling capillary formation in calcium and copper alginate gels. Materials Science and Engineering C, 2016, 58, 442-449.	7.3	18
58	In Vitro Simulation of Human Digestion: Chemical and Mechanical Behavior. Dissolution Technologies, 2016, 23, 16-23.	0.6	10
59	Cyclin D1 Gene Silencing by siRNA in ex vivo human tissue cultures. Current Drug Delivery, 2016, 13, 1-1.	1.6	8
60	New Preparative Approaches for Micro and Nano Drug Delivery Carriers. Current Drug Delivery, 2016, 13, 1-13.	1.6	11
61	Injectable Chitosan/B-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests. Current Drug Delivery, 2016, 13, 1-1.	1.6	5
62	Drug delivery from hydrogels: A general framework for the release modeling. Current Drug Delivery, 2016, 13, 1-1.	1.6	13
63	Chemical Engineering in the "BlO―world. Current Drug Delivery, 2016, 13, 1-1.	1.6	4
64	Polymers in life sciences: Pharmaceutical and biomedical applications. AIP Conference Proceedings, 2015, , .	0.4	1
65	A PSE approach to patient-individualized physiologically-based pharmacokinetic modeling. Computer Aided Chemical Engineering, 2015, , 77-84.	0.5	5
66	Liposoluble vitamin encapsulation in shell–core microparticles produced by ultrasonic atomization and microwave stabilization. LWT - Food Science and Technology, 2015, 64, 149-156.	5.2	17
67	Understanding the adhesion phenomena in carbohydrate-hydrogel-based systems: Water up-take, swelling and elastic detachment. Carbohydrate Polymers, 2015, 131, 41-49.	10.2	14
68	Controlled drug release from hydrogel-based matrices: Experiments and modeling. International Journal of Pharmaceutics, 2015, 486, 144-152.	5.2	59
69	PHEA–PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. International Journal of Pharmaceutics, 2015, 495, 719-727.	5.2	35
70	How mathematical modeling tools are helping the pharmaceutical sciences. International Journal of Pharmaceutics, 2015, 496, 157-158.	5.2	6
71	Modeling the Drug Release from Hydrogel-Based Matrices. Molecular Pharmaceutics, 2015, 12, 474-483.	4.6	84
72	Liposomes as siRNA Delivery Vectors. Current Drug Metabolism, 2015, 15, 882-892.	1.2	46

#	Article	IF	CITATIONS
73	Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs. Current Drug Metabolism, 2015, 16, 427-452.	1.2	26
74	Microwave assisted drying of banana: effects on reducing sugars and polyphenols contents. Czech Journal of Food Sciences, 2014, 32, 369-375.	1.2	8
75	Modeling of the reticulation kinetics of alginate/pluronic blends for biomedical applications. Materials Science and Engineering C, 2014, 37, 327-331.	7.3	17
76	Ultrasonic energy in liposome production: process modelling and size calculation. Soft Matter, 2014, 10, 2574.	2.7	35
77	Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique. Journal of Materials Science, 2014, 49, 5160-5170.	3.7	24
78	Single-Pot Semicontinuous Bench Scale Apparatus To Produce Microparticles. Industrial & Engineering Chemistry Research, 2014, 53, 2771-2780.	3.7	12
79	Measurements of non-uniform water content in hydroxypropyl-methyl-cellulose based matrices via texture analysis. Carbohydrate Polymers, 2014, 103, 348-354.	10.2	19
80	Random l-lactide/ε-caprolactone copolymers as drug delivery materials. Journal of Materials Science, 2014, 49, 5986-5996.	3.7	14
81	Flow induced crystallisation of polymers. Chemical Society Reviews, 2014, 43, 2240-2252.	38.1	89
82	A physiologically oriented mathematical model for the description of in vivo drug release and absorption. ADMET and DMPK, 2014, 2, .	2.1	9
83	Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis. Carbohydrate Polymers, 2013, 92, 765-768.	10.2	19
84	<i>In vitro</i> dissolution of pH sensitive microparticles for colon-specific drug delivery. Pharmaceutical Development and Technology, 2013, 18, 1399-1406.	2.4	16
85	Dielectric properties of pineapple as function of temperature and water content. International Journal of Food Science and Technology, 2013, 48, 1334-1338.	2.7	11
86	Therapeutic Potential of Nucleic Acid-Based Drugs in Coronary Hyper- Proliferative Vascular Diseases. Current Medicinal Chemistry, 2013, 20, 3515-3538.	2.4	21
87	Pharmacokinetics of Remifentanil: a three-compartmental modeling approach. Translational Medicine @ UniSa, 2013, 7, 18-22.	0.5	5
88	Microencapsulation effectiveness of small active molecules in biopolymer by ultrasonic atomization technique. Drug Development and Industrial Pharmacy, 2012, 38, 1486-1493.	2.0	17
89	In vitro simulation of drug intestinal absorption. International Journal of Pharmaceutics, 2012, 439, 165-168.	5.2	10
90	Combined convective and microwave assisted drying: Experiments and modeling. Journal of Food Engineering, 2012, 112, 304-312.	5.2	52

#	Article	IF	CITATIONS
91	Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 471-477.	4.3	88
92	Pharmaceutical applications of biocompatible polymer blends containing sodium alginate. Advances in Polymer Technology, 2012, 31, 219-230.	1.7	66
93	Drug release from matrix systems: analysis by finite element methods. Heat and Mass Transfer, 2012, 48, 519-528.	2.1	26
94	Process validation of the normalized rheological function behavior during polymer crystallization. Rheologica Acta, 2012, 51, 259-265.	2.4	3
95	An engineering approach to biomedical sciences: advanced testing methods and pharmacokinetic modeling. Translational Medicine @ UniSa, 2012, 4, 34-8.	0.5	1
96	The influence of dissolution conditions on the drug ADME phenomena. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 382-391.	4.3	28
97	Parametric simulation of drug release from hydrogel-based matrices. Journal of Pharmacy and Pharmacology, 2011, 64, 48-51.	2.4	9
98	Mathematical modeling of simultaneous drug release and in vivo absorption. International Journal of Pharmaceutics, 2011, 418, 130-141.	5.2	55
99	Anti-Osteoporotic Drug Release from Ordered Mesoporous Bioceramics: Experiments and Modeling. AAPS PharmSciTech, 2011, 12, 1193-1199.	3.3	22
100	Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. International Journal of Pharmaceutics, 2011, 407, 78-86.	5.2	75
101	Flowâ€induced crystallization during isotactic polypropylene film casting. Polymer Engineering and Science, 2011, 51, 851-861.	3.1	39
102	Electrospinning of drugâ€loaded polymer systems: Preparation and drug release. Journal of Applied Polymer Science, 2011, 122, 3551-3556.	2.6	15
103	Isotactic polypropylene crystallization: Analysis and modeling. European Polymer Journal, 2011, 47, 1097-1112.	5.4	28
104	Enteric Micro-Particles for Targeted Oral Drug Delivery. AAPS PharmSciTech, 2010, 11, 1500-1507.	3.3	43
105	Electrospinning of drug-loaded polymer systems: preparation, characterization and drug release. , 2010, , .		1
106	Physiologically Based Pharmacokinetics: A Simple, All Purpose Model. Industrial & Engineering Chemistry Research, 2010, 49, 2969-2978.	3.7	32
107	A general code to predict the drug release kinetics from different shaped matrices. European Journal of Pharmaceutical Sciences, 2009, 36, 359-368.	4.0	30
108	On the Behavior of HPMC/Theophylline Matrices for Controlled Drug Delivery. Journal of Pharmaceutical Sciences, 2009, 98, 4100-4110.	3.3	34

GAETANO LAMBERTI

#	Article	IF	CITATIONS
109	Investigation of Pluronic© F127–Water solutions phase transitions by DSC and dielectric spectroscopy. Journal of Applied Polymer Science, 2009, 114, 688-695.	2.6	43
110	Modeling the pharmacokinetics of extended release pharmaceutical systems. Heat and Mass Transfer, 2009, 45, 579-589.	2.1	15
111	Synthesis and characterization of P(MMA-AA) copolymers for targeted oral drug delivery. Polymer Bulletin, 2009, 62, 679-688.	3.3	35
112	Intensification of biopolymeric microparticles production by ultrasonic assisted atomization. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1477-1483.	3.6	33
113	Swelling of cellulose derivative (HPMC) matrix systems for drug delivery. Carbohydrate Polymers, 2009, 78, 469-474.	10.2	45
114	Supercritical fluid assisted production of HPMC composite microparticles. Journal of Supercritical Fluids, 2008, 46, 185-196.	3.2	40
115	Crystallinity and Linear Rheological Properties of Polymers. International Polymer Processing, 2007, 22, 303-310.	0.5	46
116	Analysis and modeling of swelling and erosion behavior for pure HPMC tablet. Journal of Controlled Release, 2007, 122, 181-188.	9.9	64
117	Heat transfer and crystallization kinetics during fast cooling of thin polymer films. Heat and Mass Transfer, 2007, 43, 1143-1150.	2.1	20
118	Analysis of Film Casting Process:Â Effect of Cooling during the Path in Air. Industrial & Engineering Chemistry Research, 2006, 45, 719-723.	3.7	18
119	Some issues on polymer crystallization kinetics studied by DSC non isothermal tests. Polymer Bulletin, 2006, 56, 591-598.	3.3	13
120	Carbon black/silicone rubber blends as absorbing materials to reduce Electro Magnetic Interferences (EMI). Polymer Bulletin, 2006, 57, 587-593.	3.3	63
121	Interaction between light and crystallizing polymer: a simulation study. European Polymer Journal, 2005, 41, 2055-2066.	5.4	5
122	Improved experimental characterization of crystallization kinetics. European Polymer Journal, 2005, 41, 2297-2302.	5.4	17
123	Analysis of film casting process: The heat transfer phenomena. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1117-1122.	3.6	23
124	Modeling flow induced crystallization in film casting of polypropylene. Rheologica Acta, 2004, 43, 146-158.	2.4	43
125	Modeling the interactions between light and crystallizing polymer during fast cooling. Applied Physics A: Materials Science and Processing, 2004, 78, 895-901.	2.3	38
126	A direct way to determine iPP density nucleation from DSC isothermal measurements. Polymer Bulletin, 2004, 52, 443-449.	3.3	38

#	Article	IF	CITATIONS
127	Importance of heat transfer phenomena during DSC polymer solidification. Heat and Mass Transfer, 2004, 41, 23-31.	2.1	13
128	Orientation and Crystallinity Measurements in Injection Moulded Products. Polymer Bulletin, 2003, 50, 405-411.	3.3	9
129	Orientation and Crystallinity Measurements in Film Casting Products. Polymer Bulletin, 2003, 50, 413-420.	3.3	8
130	Preliminary validation of a numerical code for heat transfer simulations. Heat and Mass Transfer, 2003, 39, 429-433.	2.1	8
131	Real-time orientation and crystallinity measurements during the isotactic polypropylene film-casting process. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 998-1008.	2.1	59
132	Crystallization during fast cooling experiments, a novel apparatus for real time monitoring. Macromolecular Symposia, 2002, 185, 181-196.	0.7	22
133	Evidences of flow induced crystallization during characterized film casting experiments. Macromolecular Symposia, 2002, 185, 167-180.	0.7	23
134	Orientation and crystallinity in film casting of polypropylene. Journal of Applied Polymer Science, 2002, 84, 1981-1992.	2.6	34
135	A new method for on-line monitoring of non isothermal crystallization kinetics of polymers. Polymer Bulletin, 2002, 48, 207-212.	3.3	16
136	Measurement and modelling of the film casting process. Chemical Engineering Science, 2002, 57, 1993-1996.	3.8	47
137	Crystallization kinetics of iPP. Model and experiments. Polymer Bulletin, 2001, 46, 231-238.	3.3	20
138	Measurement and modelling of the film casting process 1. Width distribution along draw direction. Chemical Engineering Science, 2001, 56, 5749-5761.	3.8	52
139	Modelling of orange flower concrete fractionation by supercritical CO2. Journal of Supercritical Fluids, 1999, 14, 115-121.	3.2	15
140	Modelling and simulation of the supercritical adsorption of complex terpene mixtures. Chemical Engineering Science, 1998, 53, 3537-3544.	3.8	14
141	Swellable Hydrogel-based Systems for Controlled Drug Delivery. , 0, , .		22
142	Phenomenological and Formulation Aspects in Tailored Nanoliposome Production. , $0,$, .		0
143	Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters. , 0, , .		1
144	Hydration, Swelling, Erosion And Drug Release From HPMC And HPMC/TP Matrices. , 0, , 109-116.		0