Siqi Huan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7989464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose. Composites Science and Technology, 2022, 224, 109490.	7.8	20
2	Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery. Journal of Cleaner Production, 2022, 361, 132167.	9.3	16
3	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	47.7	102
4	Depletion Effects and Stabilization of Pickering Emulsions Prepared from a Dual Nanocellulose System. ACS Sustainable Chemistry and Engineering, 2022, 10, 9066-9076.	6.7	17
5	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 2021, 12, 383-406.	9.9	41
6	Pickering Emulsions <i>via</i> Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Applied Materials & Interfaces, 2021, 13, 12581-12593.	8.0	37
7	Recent Innovations in Emulsion Science and Technology for Food Applications. Journal of Agricultural and Food Chemistry, 2021, 69, 8944-8963.	5.2	73
8	Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Current Opinion in Colloid and Interface Science, 2021, 56, 101512.	7.4	38
9	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	5.4	75
10	All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. ACS Nano, 2020, 14, 13380-13390.	14.6	41
11	Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin. ACS Nano, 2020, 14, 6921-6930.	14.6	30
12	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
13	High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils: 3D Structuring and Solid Foamâ€ ⁻ . ACS Applied Materials & Interfaces, 2020, 12, 11240-11251.	8.0	118
14	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	3.5	120
15	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	14.9	60
16	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	5.4	81
17	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 2019, 96, 709-716.	10.7	89
18	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 2019, 96, 699-708.	10.7	190

Siqi Huan

#	Article	IF	CITATIONS
19	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	6.7	97
20	Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties. Carbohydrate Polymers, 2019, 206, 29-37.	10.2	38
21	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	5.4	68
22	Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Biomacromolecules, 2018, 19, 1037-1046.	5.4	79
23	Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 2018, 20, 1571-1582.	9.0	243
24	Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules, 2018, 19, 1674-1685.	5.4	103
25	Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 2017, 207, 35-45.	5.2	97
26	Rational design and synthesis of transition layer-mediated structured latex particles with poly(vinyl) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
27	Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 2017, 66, 144-153.	10.7	225
28	Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Biomacromolecules, 2017, 18, 4393-4404.	5.4	44
29	Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 2016, 61,	10.7	223

29	emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 2016, 61, 703-711.	10.7	223
30	Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer, 2016, 92, 25-35.	3.8	63
31	Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization. RSC Advances, 2015, 5, 50756-50766.	3.6	51
32	The variation of tangential rheological properties caused by shrinkage anisotropy and moisture content gradient in white birch disks. Holzforschung, 2015, 69, 573-579.	1.9	9
33	Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers. Materials, 2015, 8, 2718-2734.	2.9	224
34	Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Materials, 2014, 7, 16-29.	2.9	39
35	Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Advances, 2014, 4, 27363.	3.6	21