Xi Shen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7989236/xi-shen-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

53	4,991	35	54
papers	citations	h-index	g-index
54	5,993 ext. citations	13	5.98
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
53	Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings <i>Nano-Micro Letters</i> , 2022 , 14, 54	19.5	5
52	Twin-structured Graphene Metamaterials with Anomalous Mechanical Properties <i>Advanced Materials</i> , 2022 , e2200444	24	4
51	Interdigitated Three-Dimensional Heterogeneous Nanocomposites for High-Performance Mechanochromic Smart Membranes. <i>ACS Nano</i> , 2021 ,	16.7	4
50	Revealing Cathode E lectrolyte Interface on Flower-Shaped Na3V2(PO4)3/C Cathode through Cryogenic Electron Microscopy. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100072	1.6	3
49	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. <i>Nano-Micro Letters</i> , 2021 , 13, 122	19.5	22
48	Unraveling the mechanical origin of stable solid electrolyte interphase. <i>Joule</i> , 2021 , 5, 1860-1872	27.8	25
47	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. <i>Progress in Materials Science</i> , 2021 , 115, 100708	42.2	49
46	Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. <i>Journal of Membrane Science</i> , 2021 , 619, 118791	9.6	47
45	Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. <i>Materials Horizons</i> , 2021 , 8, 1488-1498	14.4	22
44	Beyond homogeneous dispersion: oriented conductive fillers for high nanocomposites. <i>Materials Horizons</i> , 2021 , 8, 3009-3042	14.4	3
43	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. <i>Energy Storage Materials</i> , 2021 , 39, 305-346	19.4	9
42	Morphology, chemistry, performance trident: Insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries. <i>Nano Energy</i> , 2021 , 86, 106132	17.1	13
41	MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 147, 106430	8.4	17
40	3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. <i>Functional Composites and Structures</i> , 2020 , 2, 022001	3.5	15
39	Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. <i>Materials Horizons</i> , 2020 , 7, 2378-2389	14.4	30
38	Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. <i>Advanced Functional Materials</i> , 2020 , 30, 1910826	15.6	111
37	Graphene-based wearable piezoresistive physical sensors. <i>Materials Today</i> , 2020 , 36, 158-179	21.8	109

(2016-2019)

Highly Aligned, Anisotropic Carbon Nanofiber Films for Multidirectional Strain Sensors with Exceptional Selectivity. <i>Advanced Functional Materials</i> , 2019 , 29, 1901623	15.6	75
Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. <i>Journal of Membrane Science</i> , 2019 , 582, 1-8	9.6	79
Building 3D Architecture in 2D Thin Film for Effective EMI Shielding. <i>Matter</i> , 2019 , 1, 796-798	12.7	8
Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 2282-2294	9.5	65
An Ultralight Graphene Honeycomb Sandwich for Stretchable Light-Emitting Displays. <i>Advanced Functional Materials</i> , 2018 , 28, 1707043	15.6	39
Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. <i>ACS Applied Materials & Discrete Section</i> , 10, 6580-6592	9.5	54
A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. <i>Materials Horizons</i> , 2018 , 5, 275-284	14.4	87
Graphene/Boron Nitride-Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. <i>ACS Applied Materials & Description</i> (2018), 10, 26641-26652	9.5	51
Sliced graphene foam films for dual-functional wearable strain sensors and switches. <i>Nanoscale Horizons</i> , 2018 , 3, 35-44	10.8	60
Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 9059-9069	9.5	321
A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. <i>Materials Horizons</i> , 2017 , 4, 477-486	14.4	148
Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 102, 391-399	8.4	35
Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. <i>Carbon</i> , 2017 , 123, 385-394	10.4	86
Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 92, 190-197	8.4	46
Effect of functionalization on thermal conductivities of graphene/epoxy composites. <i>Carbon</i> , 2016 , 108, 412-422	10.4	135
Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 85, 199-206	8.4	139
Graphene Oxide Papers Simultaneously Doped with Mg(2+) and Cl(-) for Exceptional Mechanical, Electrical, and Dielectric Properties. <i>ACS Applied Materials & Dielectrical</i> , 8, 2360-71	9.5	28
Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites. <i>Nano Letters</i> , 2016 , 16, 3585-93	11.5	233
	Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623 Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. Journal of Membrane Science, 2019, 582, 1-8 Building 3D Architecture in 2D Thin Film for Effective EMI Shielding. Matter, 2019, 1, 796-798 Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Amp; Interfaces, 2019, 11, 2282-2294 An Ultralight Graphene Honeycomb Sandwich for Stretchable Light-Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043 Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Amp; Interfaces, 2018, 10, 6580-6592 A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284 Graphene/Boron Nitride-Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Densities & Samp; Interfaces, 2018, 10, 26641-26652 Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44 Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Densities for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Densities for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Densities of Polymer Composites as excellent sound absorber. Composites Part A: Applied Science and Manufacturing, 2017, 102, 391-399 Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites Part A: Applied Science and Manufacturing, 2017, 102, 391-399 Ultrahigh Graphene Foam/Carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Sc	Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623 Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. Journal of Membrane Science, 2019, 582, 1-8 Building 3D Architecture in 2D Thin Film for Effective EMI Shielding. Matter, 2019, 1, 796-798 12-7 Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Mamp: Interfaces, 2019, 11, 2282-2294 An Ultralight Graphene Honeycomb Sandwich for Stretchable Light-Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043 Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Mamp: Interfaces, 2018, 10, 6580-6592 A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284 Graphene/Boron Nitride-Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Mamp: Interfaces, 2018, 10, 26641-26652 Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44 Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interfrence Shielding. ACS Applied Materials & Mamp: Interfaces, 2017, 9, 9059-9069 A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486 Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. Composites Part A: Applied Science and Manufacturing, 2017, 102, 391-399 Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 1, 23, 385-394 Ultrahigh dielectric Constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites Part A: Applied S

18	Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites. <i>Chemistry of Materials</i> , 2016 , 28, 6731-6741	9.6	112
17	Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. <i>Carbon</i> , 2015 , 89, 102-112	10.4	114
16	Planar Porous Graphene Woven Fabric/Epoxy Composites with Exceptional Electrical, Mechanical Properties, and Fracture Toughness. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 21455-64	9.5	30
15	Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. <i>ACS Applied Materials & District Applied Materials & District Aces</i> , 2015 , 7, 5538-49	9.5	207
14	Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. Journal of Materials Science, 2014 , 49, 3225-3233	4.3	41
13	Wrinkling in graphene sheets and graphene oxide papers. <i>Carbon</i> , 2014 , 66, 84-92	10.4	160
12	Tunable thermal conductivities of graphene oxide by functionalization and tensile loading. <i>Carbon</i> , 2014 , 80, 235-245	10.4	45
11	Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. <i>Composites Science and Technology</i> , 2014 , 100, 166-173	8.6	37
10	Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. <i>Advanced Materials</i> , 2014 , 26, 5480-7	24	867
9	Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. <i>Carbon</i> , 2014 , 77, 244-254	10.4	51
8	Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. <i>ACS Nano</i> , 2014 , 8, 5774-83	16.7	257
7	Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir B lodgett assembly. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6869	7.1	51
6	Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. <i>Composites Part A: Applied Science and Manufacturing</i> , 2013 , 49, 42-50	8.4	202
5	Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. <i>Carbon</i> , 2013 , 59, 406-417	10.4	207
4	Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir B lodgett assembly. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25072		127
3	Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. <i>ACS Nano</i> , 2012 , 6, 10708-19	16.7	282
2	Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solar-Powered Water Evaporation. <i>Advanced Functional Materials</i> ,2111794	15.6	12
1	Rational Design of All Resistive Multifunctional Sensors with Stimulus Discriminability. <i>Advanced Functional Materials</i> ,2107570	15.6	6