Huan Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988637/publications.pdf Version: 2024-02-01

HUAN CONC

#	Article	IF	CITATIONS
1	Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. Chinese Chemical Letters, 2022, 33, 1493-1496.	9.0	19
2	Adsorption of polyhaloalkane vapors by adaptive macrocycle crystals of WreathArene through C-halogenâ<ï€ interactions. Chinese Chemical Letters, 2022, 33, 1970-1974.	9.0	14
3	A Conjugated Figureâ€ofâ€eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angewandte Chemie, 2022, 134, e202113334.	2.0	2
4	A Conjugated Figureâ€ofâ€Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
5	Synthesis of Finite Molecular Nanotubes by Connecting Axially Functionalized Macrocycles. CCS Chemistry, 2022, 4, 3772-3780.	7.8	9
6	Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator. Chinese Chemical Letters, 2021, 32, 681-684.	9.0	6
7	Design and Synthesis of Paraphenylene-derived Figure-of-eight Rigid Macrocycles. Chemistry Letters, 2021, 50, 819-824.	1.3	14
8	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	4.6	7
9	Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene. Chemical Science, 2021, 12, 15528-15532.	7.4	28
10	A reversible underwater glue based on photo- and thermo-responsive dynamic covalent bonds. Materials Horizons, 2020, 7, 282-288.	12.2	113
11	BowtieArene: A Dual Macrocycle Exhibiting Stimuliâ€Responsive Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 10059-10065.	13.8	120
12	BowtieArene: A Dual Macrocycle Exhibiting Stimuliâ€Responsive Fluorescence. Angewandte Chemie, 2020, 132, 10145-10151.	2.0	29
13	A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. Organic Letters, 2019, 21, 8158-8163.	4.6	15
14	Synthesis and Characterization of a Pentiptyceneâ€Derived Dual Oligoparaphenylene Nanohoop. Angewandte Chemie, 2019, 131, 3983-3987.	2.0	26
15	Synthesis and Characterization of a Pentiptyceneâ€Derived Dual Oligoparaphenylene Nanohoop. Angewandte Chemie - International Edition, 2019, 58, 3943-3947.	13.8	74
16	Synthesis of Macrocyclic Oligoparaphenylenes Derived from Anthracene Photodimer. Chinese Journal of Chemistry, 2018, 36, 1135-1138.	4.9	19
17	Visible-Light-Driven Decarboxylative Alkylation of C–H Bond Catalyzed by Dye-Sensitized Semiconductor. Organic Letters, 2018, 20, 3225-3228.	4.6	53
18	An isolable catenane consisting of two Möbius conjugated nanohoops. Nature Communications, 2018, 9, 3037.	12.8	82

Huan Cong

#	Article	IF	CITATIONS
19	Recent Synthetic Advances on π-Extended Carbon Nanohoops. Synlett, 2017, 28, 1383-1388.	1.8	18
20	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catalysis, 2017, 7, 8134-8138.	11.2	66
21	Atomâ€Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visibleâ€Light Photocatalysis. ChemSusChem, 2017, 10, 4461-4464.	6.8	26
22	[4+4] Photodimerization of Anthracene Derivatives: Recent Synthetic Advances and Applications. Chinese Journal of Organic Chemistry, 2017, 37, 543.	1.3	11
23	Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization–Cycloreversion Strategy. Journal of the American Chemical Society, 2016, 138, 11144-11147.	13.7	97
24	Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis. Journal of the American Chemical Society, 2016, 138, 1832-1835.	13.7	425
25	Asymmetric Syntheses of the Flavonoid Diels–Alder Natural Products Sanggenons C and O. Journal of the American Chemical Society, 2016, 138, 798-801.	13.7	54
26	Catalytic Enantioselective Cyclization/Cross-Coupling with Alkyl Electrophiles. Journal of the American Chemical Society, 2014, 136, 3788-3791.	13.7	186
27	Biomimetic Dehydrogenative Diels–Alder Cycloadditions: Total Syntheses of Brosimones A and B. Angewandte Chemie - International Edition, 2013, 52, 8345-8348.	13.8	59
28	Chemical Synthesis of Complex Molecules Using Nanoparticle Catalysis. ACS Catalysis, 2012, 2, 65-70.	11.2	117
29	Total Synthesis of (±)-Sorocenol B Employing Nanoparticle Catalysis. Organic Letters, 2012, 14, 2516-2519.	4.6	30
30	Synthetic cyclohexenyl chalcone natural products possess cytotoxic activities against prostate cancer cells and inhibit cysteine cathepsins in vitro. Biochemical and Biophysical Research Communications, 2011, 416, 397-402.	2.1	26
31	Silver Nanoparticle-Catalyzed Dielsâ^'Alder Cycloadditions of 2′-Hydroxychalcones. Journal of the American Chemical Society, 2010, 132, 7514-7518.	13.7	131
32	Electron Transfer-Initiated Dielsâ^'Alder Cycloadditions of 2′-Hydroxychalcones. Journal of the American Chemical Society, 2008, 130, 9214-9215.	13.7	41