
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988615/publications.pdf Version: 2024-02-01



Ушини Нилис

| #  | Article                                                                                                                                                                                                                                              | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nitrogenâ€Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh<br>Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.                                                                          | 11.1 | 1,541     |
| 2  | Development and challenges of LiFePO <sub>4</sub> cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.                                                                                                    | 15.6 | 1,058     |
| 3  | Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors.<br>Energy and Environmental Science, 2013, 6, 2497.                                                                                                  | 15.6 | 1,053     |
| 4  | Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature Communications, 2015, 6, 6929.                                                                               | 5.8  | 969       |
| 5  | Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.                                                                                                                                                            | 11.1 | 943       |
| 6  | Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode<br>Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.                                                            | 7.8  | 770       |
| 7  | Promises, Challenges, and Recent Progress of Inorganic Solidâ€State Electrolytes for Allâ€Solidâ€State<br>Lithium Batteries. Advanced Materials, 2018, 30, e1705702.                                                                                 | 11.1 | 743       |
| 8  | MOFâ€Derived Porous ZnO/ZnFe <sub>2</sub> O <sub>4</sub> /C Octahedra with Hollow Interiors for<br>Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6622-6628.                                                                       | 11.1 | 703       |
| 9  | Self-Assembled Hierarchical MoO <sub>2</sub> /Graphene Nanoarchitectures and Their Application as a<br>High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 2011, 5, 7100-7107.                                                      | 7.3  | 611       |
| 10 | Nanostructured Mo-based electrode materials for electrochemical energy storage. Chemical Society<br>Reviews, 2015, 44, 2376-2404.                                                                                                                    | 18.7 | 599       |
| 11 | Synthesis of Two-Dimensional CoS <sub>1.097</sub> /Nitrogen-Doped Carbon Nanocomposites Using<br>Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the<br>American Chemical Society, 2016, 138, 6924-6927. | 6.6  | 591       |
| 12 | Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon, 2013, 55, 328-334.                                                                                           | 5.4  | 589       |
| 13 | Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano<br>Energy, 2016, 25, 211-217.                                                                                                                     | 8.2  | 574       |
| 14 | A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell<br>Structured Cathode for Li–S Batteries. ACS Nano, 2014, 8, 9295-9303.                                                                                          | 7.3  | 552       |
| 15 | Flexible Asymmetric Micro upercapacitors Based on Bi <sub>2</sub> O <sub>3</sub> and<br>MnO <sub>2</sub> Nanoflowers: Larger Areal Mass Promises Higher Energy Density. Advanced Energy<br>Materials, 2015, 5, 1401882.                              | 10.2 | 479       |
| 16 | A Hierarchical N/Sâ€Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline<br>Microspheres for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1501929.                                                    | 10.2 | 460       |
| 17 | Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries. Advanced Energy<br>Materials, 2018, 8, 1702619.                                                                                                                   | 10.2 | 460       |
| 18 | Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews, 2020, 3, 1-42.                                                                                                                                  | 13.1 | 448       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sulfurâ€Doped Carbon with Enlarged Interlayer Distance as a Highâ€Performance Anode Material for<br>Sodiumâ€Ion Batteries. Advanced Science, 2015, 2, 1500195.                                                                | 5.6  | 446       |
| 20 | Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as<br>Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155.                                                                     | 11.1 | 440       |
| 21 | Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in<br>Highly Sensitive and Selective DNA Detection. Journal of the American Chemical Society, 2017, 139,<br>8698-8704.           | 6.6  | 440       |
| 22 | Insight into the Electrode Mechanism in Lithium‣ulfur Batteries with Ordered Microporous Carbon<br>Confined Sulfur as the Cathode. Advanced Energy Materials, 2014, 4, 1301473.                                               | 10.2 | 418       |
| 23 | A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. Journal of the American<br>Chemical Society, 2014, 136, 8941-8946.                                                                                       | 6.6  | 409       |
| 24 | Routes to High Energy Cathodes of Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501727.                                                                                                                         | 10.2 | 408       |
| 25 | Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy<br>Storage Materials, 2017, 8, 161-168.                                                                                    | 9.5  | 408       |
| 26 | Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as<br>Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.                                         | 11.1 | 384       |
| 27 | Status and prospects in sulfur–carbon composites as cathode materials for rechargeable<br>lithium–sulfur batteries. Carbon, 2015, 92, 41-63.                                                                                  | 5.4  | 371       |
| 28 | Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International<br>Edition, 2012, 51, 4934-4938.                                                                                                | 7.2  | 364       |
| 29 | Selfâ€Assembly of Single‣ayer CoAl‣ayered Double Hydroxide Nanosheets on 3D Graphene Network Used<br>as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28,<br>7640-7645.           | 11.1 | 355       |
| 30 | Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for<br>Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.                                                          | 11.1 | 341       |
| 31 | Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density.<br>Nano Energy, 2018, 51, 513-523.                                                                                         | 8.2  | 332       |
| 32 | Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 8916.                                                                          | 6.7  | 328       |
| 33 | Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid<br>Materials. Advanced Materials, 2018, 30, 1705454.                                                                             | 11.1 | 318       |
| 34 | Constructing Hierarchical Tectorumâ€like αâ€Fe <sub>2</sub> O <sub>3</sub> /PPy Nanoarrays on Carbon<br>Cloth for Solidâ€6tate Asymmetric Supercapacitors. Angewandte Chemie - International Edition, 2017, 56,<br>1105-1110. | 7.2  | 317       |
| 35 | Strategies of regulating Zn <sup>2+</sup> solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.                                        | 15.6 | 313       |
| 36 | Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO 3<br>fillers in nanocomposite films. Nano Energy, 2017, 31, 49-56.                                                           | 8.2  | 312       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices.<br>Nano Letters, 2015, 15, 3899-3906.                                                                                       | 4.5  | 296       |
| 38 | V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60, 752-759.                                                                           | 8.2  | 272       |
| 39 | Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for<br>High-Performance Sodium-Ion Batteries. Scientific Reports, 2015, 5, 9254.                                                                | 1.6  | 255       |
| 40 | Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.                                                                                                                                             | 8.2  | 253       |
| 41 | Slurryless Li <sub>2</sub> S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium<br>Sulfur Battery. Nano Letters, 2015, 15, 1796-1802.                                                                             | 4.5  | 252       |
| 42 | 3D Graphene Decorated NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> Microspheres as a Superior<br>Highâ€Rate and Ultracycleâ€Stable Anode Material for Sodium Ion Batteries. Advanced Energy Materials,<br>2016, 6, 1502197. | 10.2 | 251       |
| 43 | High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for<br>lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 5018-5023.                                                 | 5.2  | 249       |
| 44 | Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.                                                                                                         | 16.1 | 247       |
| 45 | Alkali-Metal Anodes: From Lab to Market. Joule, 2019, 3, 2334-2363.                                                                                                                                                              | 11.7 | 247       |
| 46 | Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.                                                                       | 15.6 | 245       |
| 47 | Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Materials, 2019, 16, 6-23.                                                                                 | 9.5  | 243       |
| 48 | Ultrathin, Flexible Polymer Electrolyte for Costâ€Effective Fabrication of Allâ€Solidâ€State Lithium Metal<br>Batteries. Advanced Energy Materials, 2019, 9, 1902767.                                                            | 10.2 | 239       |
| 49 | Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.                                                                                | 15.6 | 236       |
| 50 | Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano<br>Energy, 2014, 9, 229-236.                                                                                                    | 8.2  | 233       |
| 51 | MOFâ€Based Hierarchical Structures for Solarâ€Thermal Clean Water Production. Advanced Materials,<br>2019, 31, e1808249.                                                                                                         | 11.1 | 233       |
| 52 | Amorphous/Crystalline Heteroâ€Phase Pd Nanosheets: Oneâ€Pot Synthesis and Highly Selective<br>Hydrogenation Reaction. Advanced Materials, 2018, 30, e1803234.                                                                    | 11.1 | 231       |
| 53 | Graphitic Carbon Nitride (g <sub>3</sub> N <sub>4</sub> ): An Interface Enabler for Solid tate Lithium<br>Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 3699-3704.                                       | 7.2  | 220       |
| 54 | NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for<br>Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.                     | 11.1 | 219       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Atomically Dispersed Feâ€N <i><sub>x</sub></i> /C Electrocatalyst Boosts Oxygen Catalysis via a New<br>Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.                             | 10.2 | 216       |
| 56 | Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6, 7684.                                                                                                                                 | 5.8  | 215       |
| 57 | High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly<br>Sensitive and Selective Fluorescence DNA Sensors. Journal of the American Chemical Society, 2015, 137,<br>10430-10436.       | 6.6  | 214       |
| 58 | Electrode Materials of Sodium-Ion Batteries toward Practical Application. ACS Energy Letters, 2018, 3, 1604-1612.                                                                                                              | 8.8  | 214       |
| 59 | Protecting the Liâ€Metal Anode in a Li–O <sub>2</sub> Battery by using Boric Acid as an SElâ€Forming<br>Additive. Advanced Materials, 2018, 30, e1803270.                                                                      | 11.1 | 213       |
| 60 | Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nature Communications, 2019, 10, 1021.                                                          | 5.8  | 211       |
| 61 | Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic<br>Acid Oxidation. Advanced Materials, 2017, 29, 1700769.                                                                   | 11.1 | 207       |
| 62 | High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures.<br>Nano Energy, 2019, 61, 245-250.                                                                                             | 8.2  | 205       |
| 63 | Heteroatomâ€Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodiumâ€lon Batteries.<br>Small Methods, 2019, 3, 1800323.                                                                                       | 4.6  | 203       |
| 64 | Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. Journal of Physical<br>Chemistry C, 2011, 115, 15703-15709.                                                                                        | 1.5  | 201       |
| 65 | Hierarchical MoS <sub>2</sub> nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 2014, 6, 5351-5358.                                                           | 2.8  | 197       |
| 66 | Lithium–Graphite Paste: An Interface Compatible Anode for Solid‣tate Batteries. Advanced Materials,<br>2019, 31, e1807243.                                                                                                     | 11.1 | 197       |
| 67 | Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for<br>lithium-sulfur battery. Nano Energy, 2015, 11, 678-686.                                                                            | 8.2  | 190       |
| 68 | Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes.<br>Nano Research, 2015, 8, 1148-1158.                                                                                       | 5.8  | 188       |
| 69 | Flexible and Binderâ€Free Electrodes of Sb/rGO and<br>Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /rGO Nanocomposites for Sodiumâ€Ion<br>Batteries. Small, 2015, 11, 3822-3829.                             | 5.2  | 184       |
| 70 | Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy, 2018, 52, 307-314.                                                                                     | 8.2  | 176       |
| 71 | Inhibition of Manganese Dissolution in Mn <sub>2</sub> O <sub>3</sub> Cathode with Controllable<br>Ni <sup>2+</sup> Incorporation for Highâ€Performance Zinc Ion Battery. Advanced Functional<br>Materials, 2021, 31, 2009412. | 7.8  | 176       |
| 72 | Ultrafine MoO <sub>2</sub> nanoparticles embedded in a carbon matrix as a high-capacity and long-life<br>anode for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 425-431.                                   | 6.7  | 175       |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light<br>photocatalytic activity. Nanoscale, 2013, 5, 9764.                                                                                                 | 2.8  | 174       |
| 74 | Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition.<br>Nature Communications, 2022, 13, .                                                                                                                 | 5.8  | 174       |
| 75 | Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications.<br>Materials Chemistry Frontiers, 2017, 1, 24-36.                                                                                                         | 3.2  | 173       |
| 76 | Improved Reversibility of Fe <sup>3+</sup> /Fe <sup>4+</sup> Redox Couple in Sodium Super Ion<br>Conductor Type Na <sub>3</sub> Fe <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> for Sodiumâ€ion<br>Batteries. Advanced Materials, 2017, 29, 1605694. | 11.1 | 169       |
| 77 | Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.                                                                                                                             | 8.2  | 165       |
| 78 | Controlled Synthesis of Mesoporous MnO/C Networks by Microwave Irradiation and Their Enhanced Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2013, 5, 1997-2003.                                                                    | 4.0  | 162       |
| 79 | Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy, 2021, 89, 106322.                                                                                                 | 8.2  | 162       |
| 80 | High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106, 320-326.                                                                                                       | 2.6  | 160       |
| 81 | NASICON-Structured NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> @C Nanocomposite as the Low<br>Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials<br>& Interfaces, 2016, 8, 2238-2246.           | 4.0  | 159       |
| 82 | Assembly of NiO/Ni(OH) <sub>2</sub> /PEDOT Nanocomposites on Contra Wires for Fiber-Shaped<br>Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 1774-1779.                                                           | 4.0  | 157       |
| 83 | A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy and Environmental Science, 2021, 14, 3510-3521.                                                                    | 15.6 | 156       |
| 84 | Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2012, 116, 20794-20799.                                                                                      | 1.5  | 154       |
| 85 | Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. Journal of Power Sources, 2016, 308, 52-57.                                                                                           | 4.0  | 153       |
| 86 | Ultrasonic Scanning to Observe Wetting and "Unwetting―in Li-Ion Pouch Cells. Joule, 2020, 4,<br>2017-2029.                                                                                                                                           | 11.7 | 152       |
| 87 | Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. Journal of Materials Chemistry, 2012, 22, 19190.                                                                          | 6.7  | 150       |
| 88 | Tungstenâ€Đoped L1 <sub>0</sub> â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell<br>Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.                                                                       | 7.2  | 150       |
| 89 | Submonolayered Ru Deposited on Ultrathin Pd Nanosheets used for Enhanced Catalytic Applications.<br>Advanced Materials, 2016, 28, 10282-10286.                                                                                                       | 11.1 | 148       |
| 90 | Cathode materials for rechargeable aluminum batteries: current status and progress. Journal of<br>Materials Chemistry A, 2017, 5, 5646-5660.                                                                                                         | 5.2  | 147       |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Metal–Organic Framework Derived Honeycomb Co <sub>9</sub> S <sub>8</sub> @C Composites for<br>Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801080.                                                                | 10.2 | 147       |
| 92  | Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy and Environmental Science, 2019, 12, 2991-3000.                                                         | 15.6 | 147       |
| 93  | Freestanding MoO3â^' nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano<br>Energy, 2014, 9, 355-363.                                                                                                             | 8.2  | 146       |
| 94  | TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. Journal of Materials<br>Chemistry A, 2016, 4, 17711-17717.                                                                                               | 5.2  | 146       |
| 95  | Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano<br>Energy, 2013, 2, 412-418.                                                                                                                    | 8.2  | 145       |
| 96  | Revisiting the Na <sub>2/3</sub> Ni <sub>1/3</sub> Mn <sub>2/3</sub> O <sub>2</sub> Cathode: Oxygen Release Suppression. ACS Central Science, 2020, 6, 232-240.                                                                              | 5.3  | 145       |
| 97  | Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.                                                                                                                                             | 5.8  | 144       |
| 98  | Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale, 2013, 5, 2028.                                                                                     | 2.8  | 143       |
| 99  | A Dualâ€Insertion Type Sodiumâ€Ion Full Cell Based on Highâ€Quality Ternaryâ€Metal Prussian Blue Analogs.<br>Advanced Energy Materials, 2018, 8, 1702856.                                                                                    | 10.2 | 143       |
| 100 | Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries. Nano<br>Energy, 2015, 16, 479-487.                                                                                                              | 8.2  | 141       |
| 101 | Integrated Intercalationâ€Based and Interfacial Sodium Storage in Grapheneâ€Wrapped Porous<br>Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> Nanofibers Composite Aerogel. Advanced Energy<br>Materials, 2016, 6, 1600322.                  | 10.2 | 141       |
| 102 | Regulating the active species of Ni(OH) <sub>2</sub> using CeO <sub>2</sub> : 3D<br>CeO <sub>2</sub> /Ni(OH) <sub>2</sub> /carbon foam as an efficient electrode for the oxygen evolution<br>reaction. Chemical Science, 2017, 8, 3211-3217. | 3.7  | 141       |
| 103 | High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.                                                                                                       | 8.2  | 138       |
| 104 | In Situ Exfoliating and Generating Active Sites on Graphene Nanosheets Strongly Coupled with Carbon<br>Fiber toward Selfâ€Standing Bifunctional Cathode for Rechargeable Zn–Air Batteries. Advanced Energy<br>Materials, 2018, 8, 1703539.   | 10.2 | 137       |
| 105 | Mgâ€Pillared LiCoO <sub>2</sub> : Towards Stable Cycling at 4.6â€V. Angewandte Chemie - International<br>Edition, 2021, 60, 4682-4688.                                                                                                       | 7.2  | 135       |
| 106 | Electrolyte Design Enabling a Highâ€Safety and Highâ€Performance Si Anode with a Tailored<br>Electrode–Electrolyte Interphase. Advanced Materials, 2021, 33, e2103178.                                                                       | 11.1 | 135       |
| 107 | Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.                                                                              | 6.7  | 134       |
| 108 | Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface.<br>Journal of Physical Chemistry Letters, 2019, 10, 707-714.                                                                              | 2.1  | 132       |

| #   | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode<br>Materials for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 4229.                                                                                                                             | 1.6  | 131       |
| 110 | SnO <sub>2</sub> as a high-efficiency polysulfide trap in lithium–sulfur batteries. Nanoscale, 2016, 8,<br>13638-13645.                                                                                                                                                                             | 2.8  | 131       |
| 111 | Nanostructured Ti-based anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2016,<br>4, 12001-12013.                                                                                                                                                                            | 5.2  | 129       |
| 112 | High valence Mo-doped Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C as a high rate<br>and stable cycle-life cathode for sodium battery. Journal of Materials Chemistry A, 2018, 6, 1390-1396.                                                                                   | 5.2  | 129       |
| 113 | Layer-by-layer assembled MoO2–graphene thin film as a high-capacity and binder-free anode for<br>lithium-ion batteries. Nanoscale, 2012, 4, 4707.                                                                                                                                                   | 2.8  | 127       |
| 114 | Exploring Sodiumâ€ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by<br>Ballâ€Milling Method. Small, 2018, 14, e1802694.                                                                                                                                               | 5.2  | 127       |
| 115 | Subâ€6 nm Fully Ordered <i>L</i> 1 <sub>0</sub> â€Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via<br>Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy<br>Materials, 2019, 9, 1803771.                                                                 | 10.2 | 127       |
| 116 | Preparation of Singleâ€Layer<br>MoS <sub>2</sub> <i><sub>x</sub></i> Se <sub>2(1â€</sub> <i><sub>x</sub></i> <sub>x</sub> ) and<br>Mo <i><sub>x</sub></i> W <sub>1â€</sub> <i><sub>x</sub></i> S <sub>2</sub> Nanosheets with<br>Highâ€Concentration Metallic 1T Phase. Small, 2016, 12, 1866-1874. | 5.2  | 126       |
| 117 | Is graphite lithiophobic or lithiophilic?. National Science Review, 2020, 7, 1208-1217.                                                                                                                                                                                                             | 4.6  | 126       |
| 118 | A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale, 2013, 5, 3298.                                                                                                                                                         | 2.8  | 125       |
| 119 | Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for<br>Solid-State Li Metal Batteries. ACS Nano, 2019, 13, 14549-14556.                                                                                                                                    | 7.3  | 123       |
| 120 | Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy and Environmental Science, 2020, 13, 1788-1798.                                                                                                    | 15.6 | 120       |
| 121 | Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries.<br>Journal of Materials Chemistry, 2012, 22, 13826.                                                                                                                                                | 6.7  | 119       |
| 122 | Synthesis of hierarchical MoS <sub>2</sub> and its electrochemical performance as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3498-3504.                                                                                                                | 5.2  | 117       |
| 123 | A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, 2013, 62, 288-295.                                                                                                                                                              | 5.4  | 116       |
| 124 | Effect of Vanadium Incorporation on Electrochemical Performance of LiFePO <sub>4</sub> for<br>Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13520-13527.                                                                                                                       | 1.5  | 114       |
| 125 | Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties.<br>Physical Chemistry Chemical Physics, 2011, 13, 16735.                                                                                                                                                 | 1.3  | 113       |
| 126 | Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for<br>lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10375.                                                                                                                            | 5.2  | 113       |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant<br>L1 <sub>0</sub> â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.                                                          | 10.2 | 112       |
| 128 | Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiberâ€Based Meshes from<br>Waste Glass for Multifunctional Oil/Water Separation. Small, 2017, 13, 1700391.                                                              | 5.2  | 111       |
| 129 | Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Science China<br>Materials, 2016, 59, 389-407.                                                                                                                  | 3.5  | 110       |
| 130 | Improved Rechargeability of Lithium Metal Anode via Controlling Lithiumâ€ion Flux. Advanced Energy<br>Materials, 2018, 8, 1802352.                                                                                                          | 10.2 | 109       |
| 131 | Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: general synthesis, band structure, and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 20698.                                                           | 1.3  | 106       |
| 132 | Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Materials, 2018, 10, 114-121.                                                                  | 9.5  | 106       |
| 133 | Boosting Tunable Syngas Formation via Electrochemical CO <sub>2</sub> Reduction on<br>Cu/In <sub>2</sub> O <sub>3</sub> Core/Shell Nanoparticles. ACS Applied Materials & Interfaces,<br>2018, 10, 36996-37004.                             | 4.0  | 106       |
| 134 | Bifunctional Atomically Dispersed Mo–N <sub>2</sub> /C Nanosheets Boost Lithium Sulfide<br>Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.                                                   | 7.3  | 106       |
| 135 | Preparation of 1T′-Phase ReS <sub>2<i>x</i></sub> Se <sub>2(1-<i>x</i>)</sub> ( <i>x</i> = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568. | 6.6  | 104       |
| 136 | Metal–Organic Framework Derived ZnO/ZnFe <sub>2</sub> O <sub>4</sub> /C Nanocages as Stable<br>Cathode Material for Reversible Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces,<br>2015, 7, 4947-4954.                         | 4.0  | 103       |
| 137 | Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic<br>3D Structure of the Active Catalytic Phase. ACS Catalysis, 2014, 4, 1859-1867.                                                           | 5.5  | 102       |
| 138 | In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets.<br>Small, 2016, 12, 4669-4674.                                                                                                            | 5.2  | 101       |
| 139 | Polypyrrole-promoted superior cyclability and rate capability of<br>Na <sub>x</sub> Fe[Fe(CN) <sub>6</sub> ] cathodes for sodium-ion batteries. Journal of Materials<br>Chemistry A, 2016, 4, 6036-6041.                                    | 5.2  | 100       |
| 140 | Amorphous Co–Fe–P nanospheres for efficient water oxidation. Journal of Materials Chemistry A,<br>2017, 5, 25378-25384.                                                                                                                     | 5.2  | 100       |
| 141 | Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Materials, 2018, 15, 108-115.                                                                                                                            | 9.5  | 100       |
| 142 | High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries.<br>Energy Storage Materials, 2020, 25, 724-730.                                                                                          | 9.5  | 100       |
| 143 | 3D interconnected porous NiMoO <sub>4</sub> nanoplate arrays on Ni foam as high-performance<br>binder-free electrode for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22081-22087.                                           | 5.2  | 98        |
| 144 | Perovskite-Type LaSrMnO Electrocatalyst with Uniform Porous Structure for an Efficient<br>Li–O <sub>2</sub> Battery Cathode. ACS Nano, 2016, 10, 1240-1248.                                                                                 | 7.3  | 98        |

| #   | Article                                                                                                                                                                                                                               | IF         | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 145 | Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chemical Engineering Journal, 2021, 422, 130134.                                                                         | 6.6        | 98        |
| 146 | A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy and Environmental Science, 2022, 15, 1325-1333.                                                                                               | 15.6       | 98        |
| 147 | Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures<br>with enhanced activity for overall seawater splitting. Applied Catalysis B: Environmental, 2022, 302,<br>120862.                     | 10.8       | 97        |
| 148 | Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy and Environmental Science, 2021, 14, 4936-4947.                                                                           | 15.6       | 96        |
| 149 | In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and<br>Ultrafast Sodium Storage. Advanced Materials, 2017, 29, 1604708.                                                                       | 11.1       | 95        |
| 150 | Polycationic Polymer Layer for Airâ€5table and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes.<br>Advanced Materials, 2021, 33, e2007428.                                                                                   | 11.1       | 94        |
| 151 | Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cel<br>through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.                                  | ls<br>11.1 | 94        |
| 152 | Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as Highâ€Performance Cathode for<br>Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803158.                                                                   | 10.2       | 93        |
| 153 | Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors.<br>Energy Storage Materials, 2015, 1, 1-8.                                                                                           | 9.5        | 92        |
| 154 | Coordination of Surfaceâ€Induced Reaction and Intercalation: Toward a Highâ€Performance Carbon<br>Anode for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600500.                                                                | 5.6        | 92        |
| 155 | A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior<br>for Copper in Highâ€Rate and Longâ€Cycling Sodiumâ€Ion Batteries. Angewandte Chemie - International<br>Edition, 2019, 58, 1412-1416. | 7.2        | 92        |
| 156 | Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.                                                        | 15.6       | 91        |
| 157 | Facile synthesis of sandwiched Zn <sub>2</sub> GeO <sub>4</sub> –graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Nanoscale, 2014, 6, 924-930.                                             | 2.8        | 90        |
| 158 | High-performance lithium–selenium batteries promoted by heteroatom-doped microporous carbon.<br>Journal of Materials Chemistry A, 2015, 3, 3059-3065.                                                                                 | 5.2        | 90        |
| 159 | A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, 42, 262-268.                                                                                                                   | 8.2        | 90        |
| 160 | Atomicâ€Level Feâ€N  Coupled with Fe <sub>3</sub> Câ€Fe Nanocomposites in Carbon Matrixes as<br>Highâ€Efficiency Bifunctional Oxygen Catalysts. Small, 2020, 16, e1906057.                                                            | 5.2        | 90        |
| 161 | Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal–Organic Framework<br>for Anode Material in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17172-17177.                                | 4.0        | 89        |
| 162 | Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy, 2022, 93, 106839.                                                                  | 8.2        | 88        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery. Electrochimica Acta, 2015, 174, 970-977.                                                                                      | 2.6  | 87        |
| 164 | High-Performance Hard Carbon Anode: Tunable Local Structures and Sodium Storage Mechanism. ACS<br>Applied Energy Materials, 2018, 1, 2295-2305.                                                                                                | 2.5  | 87        |
| 165 | Building Practical Highâ€Voltage Cathode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2022,<br>34, e2200912.                                                                                                                      | 11.1 | 86        |
| 166 | A Metal–Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible<br>Cationic and Anionic Redox Chemistry for Highâ€Energy Sodiumâ€Ion Batteries. Angewandte Chemie -<br>International Edition, 2017, 56, 6793-6797. | 7.2  | 85        |
| 167 | Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 2020, 163, 112270.                                                                                                                                                      | 5.3  | 85        |
| 168 | Reducing Interfacial Resistance by Na-SiO <sub>2</sub> Composite Anode for NASICON-Based Solid-State Sodium Battery. , 2020, 2, 127-132.                                                                                                       |      | 84        |
| 169 | An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on<br>self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Mikrochimica Acta, 2020, 187, 402.                                              | 2.5  | 84        |
| 170 | Microwaveâ€Induced Inâ€Situ Synthesis of Zn <sub>2</sub> GeO <sub>4</sub> /Nâ€Doped Graphene<br>Nanocomposites and Their Lithiumâ€Storage Properties. Chemistry - A European Journal, 2013, 19,<br>6027-6033.                                  | 1.7  | 83        |
| 171 | A dual coaxial nanocable sulfur composite for high-rate lithium–sulfur batteries. Nanoscale, 2014, 6,<br>1653-1660.                                                                                                                            | 2.8  | 82        |
| 172 | Activating Aromatic Rings as Na-Ion Storage Sites to Achieve High Capacity. CheM, 2018, 4, 2463-2478.                                                                                                                                          | 5.8  | 82        |
| 173 | Rationally Design a Sulfur Cathode with Solidâ€Phase Conversion Mechanism for High Cycleâ€Stable Li–S<br>Batteries. Advanced Energy Materials, 2021, 11, 2003690.                                                                              | 10.2 | 82        |
| 174 | Hollow K <sub>0.27</sub> MnO <sub>2</sub> Nanospheres as Cathode for High-Performance Aqueous<br>Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14564-14571.                                                               | 4.0  | 81        |
| 175 | Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 15870-15879.                                                                     | 5.2  | 81        |
| 176 | Constructing Hierarchical Tectorumâ€like αâ€Fe <sub>2</sub> O <sub>3</sub> /PPy Nanoarrays on Carbon<br>Cloth for Solid‣tate Asymmetric Supercapacitors. Angewandte Chemie, 2017, 129, 1125-1130.                                              | 1.6  | 81        |
| 177 | Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient<br>Electrocatalyst for Primary and All-Solid-State Zn–Air Batteries. ACS Applied Materials &<br>Interfaces, 2017, 9, 24545-24554.             | 4.0  | 81        |
| 178 | Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Applied Catalysis B: Environmental, 2021, 289, 119783.                                                                                 | 10.8 | 80        |
| 179 | Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield<br>for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .                                             | 7.2  | 80        |
| 180 | Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. Carbon, 2014, 69, 302-310.                                                                                         | 5.4  | 79        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage<br>Materials, 2016, 4, 92-102.                                                                                                          | 9.5  | 79        |
| 182 | Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping.<br>Materials Today Energy, 2019, 13, 145-151.                                                                                                   | 2.5  | 79        |
| 183 | Elevated Lithium Ion Regulation by a "Natural Silk―Modified Separator for Highâ€Performance Lithium<br>Metal Anode. Advanced Functional Materials, 2021, 31, 2100537.                                                                       | 7.8  | 79        |
| 184 | Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a<br>Li Metal Anode. ACS Energy Letters, 2021, 6, 2054-2063.                                                                             | 8.8  | 79        |
| 185 | Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in<br>Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2020, 12, 31503-31513.                                                    | 4.0  | 78        |
| 186 | Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta, 2011, 56, 2689-2695.                                                                                         | 2.6  | 77        |
| 187 | A GGA+U study of lithium diffusion in vanadium doped LiFePO4. Solid State Communications, 2012, 152, 999-1003.                                                                                                                              | 0.9  | 77        |
| 188 | Mechanism of Capacity Fade in Sodium Storage and the Strategies of Improvement for FeS <sub>2</sub><br>Anode. ACS Applied Materials & Interfaces, 2017, 9, 1536-1541.                                                                       | 4.0  | 77        |
| 189 | Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode.<br>Applied Surface Science, 2020, 534, 147630.                                                                                             | 3.1  | 77        |
| 190 | Promoting Li2O2 oxidation via solvent-assisted redox shuttle process for low overpotential Li-O2 battery. Nano Energy, 2016, 30, 43-51.                                                                                                     | 8.2  | 76        |
| 191 | Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Doped Hollow Carbon Fibers. Small,<br>2019, 15, e1902688.                                                                                                                  | 5.2  | 76        |
| 192 | N/O/P-rich three-dimensional carbon network for fast sodium storage. Carbon, 2020, 170, 225-235.                                                                                                                                            | 5.4  | 76        |
| 193 | Sr <sub>3â^'3x</sub> Na <sub>3x</sub> Si <sub>3</sub> O <sub>9â^'1.5x</sub> (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. Energy and Environmental Science, 2014, 7, 1680-1684. | 15.6 | 75        |
| 194 | Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for<br>Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25317-25322.                                                            | 4.0  | 75        |
| 195 | Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. Journal of Alloys and Compounds, 2014, 586, 208-215.                                                                            | 2.8  | 74        |
| 196 | Enhanced electrochemical performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 by nanoscale surface modification with Co 3 O 4. Electrochimica Acta, 2017, 231, 294-299.                                                                              | 2.6  | 74        |
| 197 | Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte<br>architectures. Energy Storage Materials, 2020, 24, 714-718.                                                                                | 9.5  | 74        |
| 198 | Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries. Journal of<br>Materials Chemistry A, 2020, 8, 7828-7835.                                                                                          | 5.2  | 74        |

| #   | Article                                                                                                                                                                                                                                                                                 | IF                  | CITATIONS                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------|
| 199 | 3.0 V High Energy Density Symmetric Sodium-Ion Battery:<br>Na <sub>4</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> â^¥Na <sub>3</sub> V <sub>2</sub> (PO <sub><br/>ACS Applied Materials &amp; Interfaces, 2018, 10, 10022-10028.</sub>                                          | •4 <b>4/s</b> ub>)• | <ร <b>ต</b> ่ <del>อ</del> >3 รน</td |
| 200 | Stabilizing Na <sub>3</sub> Zr <sub>2</sub> Si <sub>2</sub> PO <sub>12</sub> /Na Interfacial<br>Performance by Introducing a Clean and Na-Deficient Surface. Chemistry of Materials, 2020, 32,<br>3970-3979.                                                                            | 3.2                 | 72                                   |
| 201 | Opportunities for High-Entropy Materials in Rechargeable Batteries. , 2021, 3, 160-170.                                                                                                                                                                                                 |                     | 72                                   |
| 202 | High performance lithium-sulfur batteries with a facile and effective dual functional separator.<br>Electrochimica Acta, 2016, 200, 197-203.                                                                                                                                            | 2.6                 | 71                                   |
| 203 | Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Scientific Reports, 2016, 6, 31465.                                                                                                                | 1.6                 | 71                                   |
| 204 | A "dendrite-eating―separator for high-areal-capacity lithium-metal batteries. Energy Storage<br>Materials, 2020, 31, 181-186.                                                                                                                                                           | 9.5                 | 71                                   |
| 205 | Recent Progress on Advanced Imaging Techniques for Lithiumâ€ŀon Batteries. Advanced Energy Materials,<br>2021, 11, 2000806.                                                                                                                                                             | 10.2                | 71                                   |
| 206 | Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Materials, 2020, 30, 179-186.                                                                                                                                                                   | 9.5                 | 71                                   |
| 207 | Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for<br>lithium–ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 2954.                                                                                                              | 1.3                 | 70                                   |
| 208 | Nanostructured alkali cation incorporated δ-MnO <sub>2</sub> cathode materials for aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7780-7785.                                                                                                                  | 5.2                 | 70                                   |
| 209 | Enhancing Sodium-Ion Storage Behaviors in TiNb <sub>2</sub> O <sub>7</sub> by Mechanical Ball<br>Milling. ACS Applied Materials & Interfaces, 2017, 9, 8696-8703.                                                                                                                       | 4.0                 | 70                                   |
| 210 | Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium–Sulfur Battery by Bilateral Solid Electrolyte Interface. Advanced Science, 2018, 5, 1700934.                                                                                                         | 5.6                 | 70                                   |
| 211 | Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy, 2020, 69, 104387.                                                                                                                                              | 8.2                 | 70                                   |
| 212 | Vitalization of P2–Na2/3Ni1/3Mn2/3O2 at high-voltage cyclability via combined structural modulation<br>for sodium-ion batteries. Energy Storage Materials, 2020, 29, 182-189.                                                                                                           | 9.5                 | 70                                   |
| 213 | Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium<br>Dissolution of V <sub>2</sub> O <sub>5</sub> via La <sup>3+</sup> Incorporation Enable Advanced<br>Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38416-38424. | 4.0                 | 70                                   |
| 214 | Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178.                                                                                                                                                                                                                | 11.5                | 70                                   |
| 215 | Perovskite La0.6Sr0.4CoO3-δ as a new polysulfide immobilizer for high-energy lithium-sulfur batteries.<br>Nano Energy, 2017, 40, 360-368.                                                                                                                                               | 8.2                 | 69                                   |
| 216 | A Novel Graphene-Polysulfide Anode Material for High-Performance Lithium-Ion Batteries. Scientific<br>Reports, 2013, 3, 2341.                                                                                                                                                           | 1.6                 | 68                                   |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S<br>batteries. Journal of Materials Chemistry A, 2018, 6, 5862-5869.                                              | 5.2 | 68        |
| 218 | Free-Standing Mn <sub>3</sub> O <sub>4</sub> @CNF/S Paper Cathodes with High Sulfur Loading for<br>Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13406-13412.                        | 4.0 | 68        |
| 219 | A Si/C nanocomposite anode by ball milling for highly reversible sodium storage. Electrochemistry Communications, 2016, 70, 8-12.                                                                              | 2.3 | 66        |
| 220 | Biomimetic Root-like TiN/C@S Nanofiber as a Freestanding Cathode with High Sulfur Loading for<br>Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37955-37962.                          | 4.0 | 66        |
| 221 | Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium–Sulfur<br>Batteries. Advanced Materials Interfaces, 2018, 5, 1800243.                                                      | 1.9 | 66        |
| 222 | Fluorideâ€Rich Solidâ€Electrolyteâ€Interface Enabling Stable Sodium Metal Batteries in Highâ€Safe<br>Electrolytes. Advanced Functional Materials, 2021, 31, 2103522.                                           | 7.8 | 66        |
| 223 | Evaluation of Pr1+xBa1-xCo2O5+l̂´ (x = 0 - 0.30) as cathode materials for solid-oxide fuel cells.<br>Electrochimica Acta, 2014, 133, 364-372.                                                                  | 2.6 | 65        |
| 224 | Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. Journal of Power Sources, 2010, 195, 5351-5359.                                            | 4.0 | 64        |
| 225 | Symmetric Electrodes for Electrochemical Energyâ€Storage Devices. Advanced Science, 2016, 3, 1600115.                                                                                                          | 5.6 | 64        |
| 226 | F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries.<br>Science China Materials, 2017, 60, 629-636.                                                                  | 3.5 | 64        |
| 227 | Realization of a High-Voltage and High-Rate Nickel-Rich NCM Cathode Material for LIBs by Co and Ti<br>Dual Modification. ACS Applied Materials & Interfaces, 2021, 13, 17707-17716.                            | 4.0 | 64        |
| 228 | VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors. Scientific Reports, 2015, 5, 16012.                                                                                       | 1.6 | 63        |
| 229 | Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy, 2020, 72, 104725.                                                                         | 8.2 | 63        |
| 230 | Facile fabrication of porous Cr-doped SrTiO <sub>3</sub> nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 3935-3943. | 5.2 | 62        |
| 231 | High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for<br>lithium sulfur batteries. Energy Storage Materials, 2020, 26, 570-576.                                           | 9.5 | 62        |
| 232 | Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for<br>lithium/sulfur cells. Nano Energy, 2016, 26, 524-532.                                                      | 8.2 | 61        |
| 233 | Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy, 2016, 27, 647-657.                                                       | 8.2 | 61        |
| 234 | Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4910.                               | 6.7 | 60        |

| #   | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochimica Acta, 2012, 63, 118-123.                                                                                                | 2.6  | 60        |
| 236 | Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage. Journal of Materials Science and Technology, 2021, 76, 11-19.                                               | 5.6  | 60        |
| 237 | Construction of hierarchical Co9S8@NiO synergistic microstructure for high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021, 603, 440-449.                                                                                      | 5.0  | 60        |
| 238 | Exceptional Activity of a Pt–Rh–Ni Ternary Nanostructured Catalyst for the Electrochemical<br>Oxidation of Ethanol. ChemElectroChem, 2015, 2, 903-908.                                                                                                               | 1.7  | 59        |
| 239 | Impedance Characteristics and Diagnoses of Automotive Lithium-Ion Batteries at 7.5% to 93.0% State of Charge. Electrochimica Acta, 2016, 219, 751-765.                                                                                                               | 2.6  | 59        |
| 240 | Preparation of Ultrathin Twoâ€Dimensional<br>Ti <sub><i>x</i></sub> Ta <sub>1â^'<i>x</i></sub> S <sub><i>y</i></sub> O <sub><i>z</i></sub> Nanosheets<br>as Highly Efficient Photothermal Agents. Angewandte Chemie - International Edition, 2017, 56,<br>7842-7846. | 7.2  | 59        |
| 241 | Ultranarrow Graphene Nanoribbons toward Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1801375.                                                                                                                                                | 5.6  | 59        |
| 242 | Facile synthesis of bimodal porous graphitic carbon nitride nanosheets as efficient photocatalysts for hydrogen evolution. Nano Energy, 2018, 50, 376-382.                                                                                                           | 8.2  | 58        |
| 243 | Intrinsic Effects of Ruddlesdenâ€Popperâ€Based Bifunctional Catalysts for Highâ€Temperature Oxygen<br>Reduction and Evolution. Advanced Energy Materials, 2019, 9, 1901573.                                                                                          | 10.2 | 58        |
| 244 | Air-Stable NaxTMO2 Cathodes for Sodium Storage. Frontiers in Chemistry, 2019, 7, 335.                                                                                                                                                                                | 1.8  | 58        |
| 245 | Core-shell hexacyanoferrate for superior Na-ion batteries. Journal of Power Sources, 2016, 329, 290-296.                                                                                                                                                             | 4.0  | 57        |
| 246 | Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries. Electrochimica Acta, 2019, 304, 11-19.                                                                                                               | 2.6  | 57        |
| 247 | Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 299, 120657.                                                                     | 10.8 | 57        |
| 248 | Facile Synthesis of Layer Structured GeP3/C with Stable Chemical Bonding for Enhanced Lithium-Ion Storage. Scientific Reports, 2017, 7, 43582.                                                                                                                       | 1.6  | 56        |
| 249 | A Li–Al–O Solid‧tate Electrolyte with High Ionic Conductivity and Good Capability to Protect Li<br>Anode. Advanced Functional Materials, 2020, 30, 1905949.                                                                                                          | 7.8  | 55        |
| 250 | Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 708, 743-750.                                                                               | 2.8  | 54        |
| 251 | TiO <sub>2</sub> –B Nanosheets/Anatase Nanocrystals Coâ€Anchored on Nanoporous Graphene: In Situ<br>Reduction–Hydrolysis Synthesis and Their Superior Rate Performance as an Anode Material. Chemistry<br>- A European Journal, 2014, 20, 1383-1388.                 | 1.7  | 53        |
| 252 | Microwaveâ€Assisted Rapid Synthesis of Selfâ€Assembled Tâ€Nb <sub>2</sub> O <sub>5</sub> Nanowires for<br>Highâ€Energy Hybrid Supercapacitors. Chemistry - A European Journal, 2017, 23, 4203-4209.                                                                  | 1.7  | 53        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Fabricating three-dimensional hierarchical porous N-doped graphene by a tunable assembly method<br>for interlayer assisted lithium-sulfur batteries. Chemical Engineering Journal, 2017, 327, 855-867.                                       | 6.6 | 53        |
| 254 | Nano-ordered structure regulation in delithiated Si anode triggered by homogeneous and stable<br>Li-ion diffusion at the interface. Nano Energy, 2020, 72, 104651.                                                                           | 8.2 | 53        |
| 255 | Synthesis of Amorphous FeOOH/Reduced Graphene Oxide Composite by Infrared Irradiation and Its<br>Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 10145-10150.                                             | 4.0 | 52        |
| 256 | Porous NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C Hierarchical Nanofibers for Ultrafast<br>Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 27039-27046.                                              | 4.0 | 52        |
| 257 | F-Doped NaTi <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C Nanocomposite as a High-Performance<br>Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3116-3124.                                                 | 4.0 | 52        |
| 258 | Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy, 2020, 67, 104250.                                                                                      | 8.2 | 52        |
| 259 | Hierarchical self-assembly of Mn2Mo3O8–graphene nanostructures and their enhanced<br>lithium-storage properties. Journal of Materials Chemistry, 2011, 21, 17229.                                                                            | 6.7 | 50        |
| 260 | Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries. Chemical Communications, 2015, 51, 2798-2801.                                                                                                    | 2.2 | 50        |
| 261 | Tuning and understanding the supercapacitance of heteroatom-doped graphene. Energy Storage<br>Materials, 2015, 1, 103-111.                                                                                                                   | 9.5 | 50        |
| 262 | Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance<br>Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 31879-31886.                                                                    | 4.0 | 50        |
| 263 | Novel Alkaline Zn/Na <sub>0.44</sub> MnO <sub>2</sub> Dual-Ion Battery with a High Capacity and Long<br>Cycle Lifespan. ACS Applied Materials & Interfaces, 2018, 10, 34108-34115.                                                           | 4.0 | 50        |
| 264 | Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for<br>pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG<br>Asia Materials, 2018, 10, 429-440. | 3.8 | 50        |
| 265 | Architectural design and phase engineering of N/B-codoped TiO <sub>2</sub> (B)/anatase nanotube assemblies for high-rate and long-life lithium storage. Journal of Materials Chemistry A, 2015, 3, 22591-22598.                              | 5.2 | 49        |
| 266 | FeNC catalyst modified graphene sponge as a cathode material for lithium-oxygen battery. Journal of<br>Alloys and Compounds, 2014, 595, 185-191.                                                                                             | 2.8 | 48        |
| 267 | Synthesis of cobalt nanofibers @ nickel sulfide nanosheets hierarchical core-shell composites for anode materials of lithium ion batteries. Electrochimica Acta, 2018, 284, 418-426.                                                         | 2.6 | 48        |
| 268 | A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries. Chemical Communications, 2014, 50, 1962.                                                                                                                        | 2.2 | 47        |
| 269 | Binding TiO <sub>2</sub> -B nanosheets with N-doped carbon enables highly durable anodes for<br>lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.                                                                 | 5.2 | 47        |
| 270 | Mgâ€Pillared LiCoO <sub>2</sub> : Towards Stable Cycling at 4.6â€V. Angewandte Chemie, 2021, 133,<br>4732-4738.                                                                                                                              | 1.6 | 47        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries.<br>EnergyChem, 2021, 3, 100058.                                                                                           | 10.1 | 47        |
| 272 | Improved Electrochemical Performance in Li3V2(PO4)3 Promoted by Niobium-Incorporation. Journal of the Electrochemical Society, 2011, 158, A924.                                                                      | 1.3  | 46        |
| 273 | Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol<br>electro-oxidation: Pt layer strain and morphology effects. Physical Chemistry Chemical Physics, 2014,<br>16, 18866-18876. | 1.3  | 46        |
| 274 | Improving the electrochemical performance of a lithium–sulfur battery with a conductive polymer-coated sulfur cathode. RSC Advances, 2015, 5, 44160-44164.                                                           | 1.7  | 46        |
| 275 | Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage. Electrochimica Acta, 2019, 321, 134698.                                                                  | 2.6  | 46        |
| 276 | Enabling Anionic Redox Stability of<br>P2â€Na <sub>5/6</sub> Li <sub>1/4</sub> Mn <sub>3/4</sub> O <sub>2</sub> by Mg Substitution. Advanced<br>Materials, 2022, 34, e2105404.                                       | 11.1 | 46        |
| 277 | One-step synthesis of a silicon/hematite@carbon hybrid nanosheet/silicon sandwich-like composite as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4056-4061.                    | 5.2  | 45        |
| 278 | A writable lithium metal ink. Science China Chemistry, 2020, 63, 1483-1489.                                                                                                                                          | 4.2  | 45        |
| 279 | SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1431-1434.                        | 2.3  | 44        |
| 280 | New P2-Type Honeycomb-Layered Sodium-Ion Conductor:<br>Na <sub>2</sub> Mg <sub>2</sub> TeO <sub>6</sub> . ACS Applied Materials & Interfaces, 2018, 10,<br>15760-15766.                                              | 4.0  | 44        |
| 281 | Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochimica Acta, 2020, 330, 135310.                                              | 2.6  | 44        |
| 282 | Shaping the Contact between Li Metal Anode and Solidâ€ <del>S</del> tate Electrolytes. Advanced Functional<br>Materials, 2020, 30, 1908701.                                                                          | 7.8  | 44        |
| 283 | Electrospun Conformal Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> /C Fibers for Highâ€Rate<br>Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 611-616.                                                         | 1.7  | 43        |
| 284 | MOF-derived hollow Co(Ni)Se2/N-doped carbon composite material for preparation of sodium ion battery anode. Ceramics International, 2020, 46, 4532-4542.                                                             | 2.3  | 43        |
| 285 | Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards<br>high-performance alkaline seawater splitting. Nanoscale, 2020, 12, 21743-21749.                                  | 2.8  | 43        |
| 286 | Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Storage Materials, 2020, 33, 432-441.                                                            | 9.5  | 43        |
| 287 | Rational Design of Hierarchically Structured CoS <sub>2</sub> @NCNTs from Metal–Organic<br>Frameworks for Efficient Lithium/Sodium Storage Performance. ACS Applied Energy Materials, 2020, 3,<br>6205-6214.         | 2.5  | 43        |
| 288 | Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foams with superior performance for<br>lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14964.                                           | 6.7  | 42        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | A P2â€Type Layered Superionic Conductor Gaâ€Doped Na <sub>2</sub> Zn <sub>2</sub> TeO <sub>6</sub> for<br>Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.                                                       | 1.7 | 42        |
| 290 | A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte<br>Chemie - International Edition, 2019, 58, 2345-2349.                                                                                                        | 7.2 | 42        |
| 291 | Oxygen selective membrane based on perfluoropolyether for Li-Air battery with long cycle life. Energy<br>Storage Materials, 2019, 20, 307-314.                                                                                                                | 9.5 | 42        |
| 292 | An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance. Ceramics International, 2020, 46, 11397-11405.                                | 2.3 | 42        |
| 293 | Sowing Silver Seeds within Patterned Ditches for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2021, 8, e2100684.                                                                                                                                 | 5.6 | 42        |
| 294 | Mesoporous Pd@Pt core–shell nanoparticles supported on multi-walled carbon nanotubes as a<br>sensing platform: application in simultaneous electrochemical detection of anticancer drugs<br>doxorubicin and dasatinib. Analytical Methods, 2019, 11, 443-453. | 1.3 | 41        |
| 295 | Fast Li-ion Conductor of Li <sub>3</sub> HoBr <sub>6</sub> for Stable All-Solid-State Lithium–Sulfur<br>Battery. Nano Letters, 2021, 21, 9325-9331.                                                                                                           | 4.5 | 41        |
| 296 | High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012, 513, 414-419.                                                                                                | 2.8 | 40        |
| 297 | Self-assembly of hybrid Fe2Mo3O8–reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 4468.                                                                                                 | 5.2 | 40        |
| 298 | A super-long life rechargeable aluminum battery. Solid State Ionics, 2018, 320, 70-75.                                                                                                                                                                        | 1.3 | 40        |
| 299 | Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries.<br>Electrochimica Acta, 2019, 298, 121-126.                                                                                                                            | 2.6 | 40        |
| 300 | Semiâ€Flooded Sulfur Cathode with Ultralean Absorbed Electrolyte in Li–S Battery. Advanced Science,<br>2020, 7, 1903168.                                                                                                                                      | 5.6 | 40        |
| 301 | Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. Journal of<br>Materials Chemistry A, 2013, 1, 15053.                                                                                                                          | 5.2 | 39        |
| 302 | Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie -<br>International Edition, 2017, 56, 13790-13794.                                                                                                                        | 7.2 | 39        |
| 303 | In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries.<br>ACS Applied Materials & Interfaces, 2019, 11, 29985-29992.                                                                                         | 4.0 | 39        |
| 304 | Li <sub>6.7</sub> La <sub>3</sub> Zr <sub>1.7</sub> Ta <sub>0.3</sub> O <sub>12</sub> Reinforced<br>PEO/PVDF-HFP Based Composite Solid Electrolyte for All Solid-State Lithium Metal Battery. Energy<br>& Fuels, 2020, 34, 15011-15018.                       | 2.5 | 39        |
| 305 | Effects of Sr-site deficiency on structure and electrochemical performance in Sr 2 MgMoO 6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270, 441-448.                                                                                           | 4.0 | 38        |
| 306 | Ultra-thin metal-organic framework nanoribbons. National Science Review, 2020, 7, 46-52.                                                                                                                                                                      | 4.6 | 38        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Ultrathin Conductive Interlayer with Highâ€Đensity Antisite Defects for Advanced Lithium–Sulfur<br>Batteries. Advanced Functional Materials, 2021, 31, 2001201.                                                                 | 7.8  | 38        |
| 308 | Ultrathin 2D Copper(I) 1,2,4â€Triazolate Coordination Polymer Nanosheets for Efficient and Selective<br>Gene Silencing and Photodynamic Therapy. Advanced Materials, 2021, 33, e2100849.                                        | 11.1 | 38        |
| 309 | Improving Na/Na <sub>3</sub> Zr <sub>2</sub> Si <sub>2</sub> PO <sub>12</sub> Interface via<br>SnO <i><sub>x</sub></i> /Sn Film for Highâ€Performance Solidâ€State Sodium Metal Batteries. Small<br>Methods, 2021, 5, e2100339. | 4.6  | 38        |
| 310 | Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage. Carbon, 2021, 183, 415-427.                                                                                 | 5.4  | 38        |
| 311 | Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries. Energy and Environmental Science, 2022, 15, 2029-2038.                                                              | 15.6 | 38        |
| 312 | Low temperature synthesis and magnetism of La0.75Ca0.25MnO3 nanoparticles. Journal of Physics and Chemistry of Solids, 2000, 61, 1407-1413.                                                                                     | 1.9  | 37        |
| 313 | High power and capacity of LiNi0.5Mn1.5O4 thin films cathodes prepared by pulsed laser deposition.<br>Electrochimica Acta, 2013, 102, 416-422.                                                                                  | 2.6  | 37        |
| 314 | A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries. Journal of<br>Power Sources, 2017, 360, 319-323.                                                                                           | 4.0  | 37        |
| 315 | Snâ€Alloy Foil Electrode with Mechanical Prelithiation: Fullâ€Cell Performance up to 200 Cycles.<br>Advanced Energy Materials, 2019, 9, 1902150.                                                                                | 10.2 | 37        |
| 316 | Air-stable means more: designing air-defendable lithium metals for safe and stable batteries. Materials<br>Horizons, 2020, 7, 2619-2634.                                                                                        | 6.4  | 37        |
| 317 | Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 49, 161-165.                                                                   | 7.1  | 37        |
| 318 | The Failure Mechanism of Lithium-Sulfur Batteries under Lean-Ether-Electrolyte Conditions. Energy<br>Storage Materials, 2021, 38, 255-261.                                                                                      | 9.5  | 37        |
| 319 | Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/Electrode Interfacial Chemistries. ACS Energy Letters, 2022, 7, 2032-2042.                                                                        | 8.8  | 37        |
| 320 | Suppressed P2–P2′ phase transition of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Energy Storage Materials, 2022, 51, 559-567.                                                                 | 9.5  | 37        |
| 321 | A Metal–Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible<br>Cationic and Anionic Redox Chemistry for Highâ€Energy Sodiumâ€Ion Batteries. Angewandte Chemie, 2017,<br>129, 6897-6901.         | 1.6  | 36        |
| 322 | Allâ€Solidâ€State Batteries: Promises, Challenges, and Recent Progress of Inorganic Solidâ€State<br>Electrolytes for Allâ€Solidâ€State Lithium Batteries (Adv. Mater. 17/2018). Advanced Materials, 2018, 30,<br>1870122.       | 11.1 | 36        |
| 323 | Realizing an Applicable "Solid → Solid―Cathode Process via a Transplantable Solid Electrolyte Interface<br>for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29830-29837.                             | 4.0  | 36        |
| 324 | A Lithiumâ€ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode.<br>Advanced Science, 2019, 6, 1901120.                                                                                   | 5.6  | 36        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.                                                                                                                                 | 4.0  | 36        |
| 326 | Corallineâ€Like Nâ€Doped Hierarchically Porous Carbon Derived from Enteromorpha as a Host Matrix for<br>Lithiumâ€Sulfur Battery. Chemistry - A European Journal, 2017, 23, 18208-18215.                                                        | 1.7  | 35        |
| 327 | Advanced Characterization Techniques for Interface in Allâ€Solidâ€State Batteries. Small Methods, 2020,<br>4, 2000111.                                                                                                                         | 4.6  | 35        |
| 328 | Highly Efficient and Stable Hydrogen Production in All pH Range by Two-Dimensional Structured<br>Metal-Doped Tungsten Semicarbides. Research, 2019, 2019, 4029516.                                                                             | 2.8  | 35        |
| 329 | TiO <sub>2</sub> as Second Phase in Na <sub>3</sub> Zr <sub>2</sub> Si <sub>2</sub> PO <sub>12</sub><br>to Suppress Dendrite Growth in Sodium Metal Solidâ€State Batteries. Advanced Energy Materials, 2022,<br>12, .                          | 10.2 | 35        |
| 330 | Bifunctional Lil additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry. Journal of Energy Chemistry, 2022, 71, 218-224.                                                                  | 7.1  | 35        |
| 331 | Facile scalable synthesis and superior lithium storage performance of ball-milled<br>MoS <sub>2</sub> –graphite nanocomposites. Journal of Materials Chemistry A, 2015, 3, 10466-10470.                                                        | 5.2  | 34        |
| 332 | Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo <sub>2</sub> O <sub>4</sub><br>anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3,<br>24303-24308.                     | 5.2  | 34        |
| 333 | Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes. Electrochimica Acta, 2017, 235, 150-157.                                                                                          | 2.6  | 34        |
| 334 | Multiple Active Sites: Lithium Storage Mechanism of Cuâ€∓CNQ as an Anode Material for Lithiumâ€lon<br>Batteries. Chemistry - an Asian Journal, 2019, 14, 4289-4295.                                                                            | 1.7  | 34        |
| 335 | 3D hierarchical porous Co <sub>1â^'x</sub> S@C derived from a ZIF-67 single crystals self-assembling<br>superstructure with superior pseudocapacitance. Journal of Materials Chemistry A, 2019, 7, 17248-17253.                                | 5.2  | 34        |
| 336 | Nanoparticle Assembled Mesoporous MoO <sub>2</sub> Microrods Derived from Metal Organic<br>Framework and Wrapped with Graphene as the Sulfur Host for Longâ€Life Lithium–Sulfur Batteries.<br>Advanced Materials Interfaces, 2019, 6, 1801636. | 1.9  | 34        |
| 337 | Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar<br>MoS <sub>2</sub> -Based Nanocomposite. Bioconjugate Chemistry, 2017, 28, 1059-1067.                                                              | 1.8  | 33        |
| 338 | Objectively Evaluating the Cathode Performance of Lithiumâ€Oxygen Batteries. Advanced Energy<br>Materials, 2017, 7, 1602938.                                                                                                                   | 10.2 | 33        |
| 339 | Inâ€Situâ€Formed Hierarchical Metal–Organic Flexible Cathode for Highâ€Energy Sodiumâ€Ion Batteries.<br>ChemSusChem, 2017, 10, 4704-4708.                                                                                                      | 3.6  | 33        |
| 340 | Facile synthesis of Li2S@C composites as cathode for Li–S batteries. Journal of Energy Chemistry, 2019,<br>37, 111-116.                                                                                                                        | 7.1  | 33        |
| 341 | Nanocrystalline Li–Al–Mn–Si Foil as Reversible Li Host: Electronic Percolation and Electrochemical<br>Cycling Stability. Nano Letters, 2020, 20, 896-904.                                                                                      | 4.5  | 33        |
| 342 | Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes. Nano Energy, 2022, 93, 106811.                                                            | 8.2  | 33        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Enhanced kinetics of polysulfide redox reactions on Mo <sub>2</sub> C/CNT in lithium–sulfur batteries. Nanotechnology, 2018, 29, 295401.                                                                 | 1.3  | 32        |
| 344 | Sodiumâ€lon Batteries: Prussian Blue Cathode Materials for Sodiumâ€lon Batteries and Other Ion Batteries<br>(Adv. Energy Mater. 17/2018). Advanced Energy Materials, 2018, 8, 1870079.                   | 10.2 | 32        |
| 345 | Chitosan Derived Carbon Matrix Encapsulated CuP <sub>2</sub> Nanoparticles for Sodium-Ion<br>Storage. ACS Applied Materials & Interfaces, 2019, 11, 12415-12420.                                         | 4.0  | 32        |
| 346 | Graphitic Carbon Nitride (g <sub>3</sub> N <sub>4</sub> ): An Interface Enabler for Solid‣tate Lithium<br>Metal Batteries. Angewandte Chemie, 2020, 132, 3728-3733.                                      | 1.6  | 32        |
| 347 | Composite Lithium Metal Anodes with Lithiophilic and Lowâ€Tortuosity Scaffold Enabling Ultrahigh<br>Currents and Capacities in Carbonate Electrolytes. Advanced Functional Materials, 2021, 31, 2009961. | 7.8  | 32        |
| 348 | Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes<br>for Sodium-Ion Batteries. Nano-Micro Letters, 2022, 14, 9.                                        | 14.4 | 32        |
| 349 | Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters, 2022, 7, 650-658.                                                                                | 8.8  | 32        |
| 350 | High-stability 5V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide. Electrochimica Acta, 2014, 136, 450-456.                                                       | 2.6  | 31        |
| 351 | A lithium–tellurium rechargeable battery with exceptional cycling stability. Journal of Applied Electrochemistry, 2016, 46, 627-633.                                                                     | 1.5  | 31        |
| 352 | Advanced anodes composed of graphene encapsulated nano-silicon in a carbon nanotube network.<br>RSC Advances, 2017, 7, 15694-15701.                                                                      | 1.7  | 31        |
| 353 | Rational Design of Threeâ€Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors.<br>ChemElectroChem, 2017, 4, 2428-2441.                                                                 | 1.7  | 31        |
| 354 | Ultrahigh sulfur loading in ZnS1- /rGO through in situ oxidation-refilling route for high-performance Li S batteries. Journal of Power Sources, 2019, 414, 453-459.                                      | 4.0  | 31        |
| 355 | Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage.<br>Chemical Engineering Journal, 2019, 370, 1425-1433.                                                 | 6.6  | 31        |
| 356 | Ultrafine Prussian Blue as a Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery Cathode. Energy Technology,<br>2019, 7, 1900108.                                                                              | 1.8  | 31        |
| 357 | Core-shell Mn3O4 nanorods with porous Fe2O3 layer supported on graphene conductive nanosheets for high-performance lithium storage application. Composites Part B: Engineering, 2019, 167, 668-675.      | 5.9  | 31        |
| 358 | A Supramolecular Complex of C <sub>60</sub> –S with Highâ€Density Active Sites as a Cathode for<br>Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 14313-14318.           | 7.2  | 31        |
| 359 | TiO <sub>2</sub> Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries.<br>ACS Applied Materials & Interfaces, 2021, 13, 28398-28404.                                       | 4.0  | 31        |
| 360 | Insight into the Fading Mechanism of the Solid onversion Sulfur Cathodes and Designing Long Cycle<br>Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, 2102774.                             | 10.2 | 31        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Hydrothermal Synthesis of Li4Ti5O12/TiO2 Nano-composite As High Performance Anode Material for<br>Li-Ion Batteries. Electrochimica Acta, 2014, 147, 506-512.                                                   | 2.6 | 30        |
| 362 | A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12073-12079.                              | 5.2 | 30        |
| 363 | Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode.<br>Angewandte Chemie, 2019, 131, 15617-15623.                                                                   | 1.6 | 30        |
| 364 | Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano<br>Energy, 2020, 69, 104471.                                                                                   | 8.2 | 30        |
| 365 | Molecular design of a multifunctional binder <i>via</i> grafting and crosslinking for high performance silicon anodes. Journal of Materials Chemistry A, 2021, 9, 8416-8424.                                   | 5.2 | 30        |
| 366 | Low-cost fumed silicon dioxide uniform Li+ flux for lean-electrolyte and anode-free Li/S battery.<br>Energy Storage Materials, 2022, 48, 366-374.                                                              | 9.5 | 30        |
| 367 | Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. Journal of Nanoparticle Research, 2012, 14, 1.                                                          | 0.8 | 29        |
| 368 | A sulfurization-based oligomeric sodium salt as a high-performance organic anode for sodium ion batteries. Chemical Communications, 2016, 52, 11207-11210.                                                     | 2.2 | 29        |
| 369 | Singleâ€Layer Ternary Chalcogenide Nanosheet as a Fluorescenceâ€Based "Captureâ€Release―Biomolecular<br>Nanosensor. Small, 2017, 13, 1601925.                                                                  | 5.2 | 29        |
| 370 | Advanced Li <sub>2</sub> S/Si Full Battery Enabled by TiN Polysulfide Immobilizer. Small, 2019, 15, e1902377.                                                                                                  | 5.2 | 29        |
| 371 | A Stable Lithium–Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether. Angewandte<br>Chemie, 2019, 131, 2367-2371.                                                                                | 1.6 | 29        |
| 372 | Surface modification of MoOxSy on porous TiO2 nanospheres as an anode material with highly reversible and ultra-fast lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 15128.             | 5.2 | 28        |
| 373 | Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5320-5328. | 1.0 | 28        |
| 374 | High-performance lithium-selenium battery with Se/microporous carbon composite cathode and carbonate-based electrolyte. Science China Materials, 2015, 58, 91-97.                                              | 3.5 | 28        |
| 375 | Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm, 2014, 16, 649-653.                                                          | 1.3 | 27        |
| 376 | High-performance hierarchical LiNi1/3Mn1/3Co1/3O2 microspheres synthesized via a facile template-sacrificial route. Journal of Alloys and Compounds, 2014, 589, 615-621.                                       | 2.8 | 27        |
| 377 | Three-dimensional hierarchical porous MnCo2O4@MnO2 network towards highly reversible lithium storage by unique structure. Chemical Engineering Journal, 2019, 378, 122207.                                     | 6.6 | 27        |
| 378 | Methods and Cost Estimation for the Synthesis of Nanosized Lithium Sulfide. Small Structures, 2021, 2, 2000059.                                                                                                | 6.9 | 27        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Hierarchical Structural Evolution of Zn <sub>2</sub> GeO <sub>4</sub> in Binary Solvent and Its<br>Effect on Li-ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 9778-9784.                                                    | 4.0 | 26        |
| 380 | Recent Advances in Cathode Materials for Roomâ€Temperature Sodiumâ^'Sulfur Batteries.<br>ChemPhysChem, 2019, 20, 3164-3176.                                                                                                                         | 1.0 | 26        |
| 381 | Sustainable cycling enabled by a high-concentration electrolyte for lithium-organic batteries.<br>Chemical Communications, 2019, 55, 608-611.                                                                                                       | 2.2 | 26        |
| 382 | General Strategy To Synthesize Highly Dense Metal Oxide Quantum Dots-Anchored Nitrogen-Rich<br>Graphene Compact Monoliths To Enable Fast and High-Stability Volumetric Lithium/Sodium Storage.<br>ACS Applied Energy Materials, 2019, 2, 3500-3512. | 2.5 | 26        |
| 383 | Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. ACS Applied Energy<br>Materials, 2019, 2, 187-191.                                                                                                                  | 2.5 | 26        |
| 384 | Twoâ€Plateau Liâ€5e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie -<br>International Edition, 2020, 59, 13908-13914.                                                                                                        | 7.2 | 26        |
| 385 | Unusual 4H-phase twinned noble metal nanokites. Nature Communications, 2019, 10, 2881.                                                                                                                                                              | 5.8 | 25        |
| 386 | High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. ACS<br>Applied Materials & Interfaces, 2019, 11, 24192-24197.                                                                                     | 4.0 | 25        |
| 387 | Lithium metal electrode protected by stiff and tough self-compacting separator. Nano Energy, 2020, 69, 104399.                                                                                                                                      | 8.2 | 25        |
| 388 | Boosting oxygen reduction activity and enhancing stability through structural transformation of layered lithium manganese oxide. Nature Communications, 2021, 12, 3136.                                                                             | 5.8 | 25        |
| 389 | Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors. Journal of Materiomics, 2016, 2, 248-255.                                                                                           | 2.8 | 24        |
| 390 | Enhancing surface activity of La0.6Sr0.4CoO3-δ cathode by a simple infiltration process. International<br>Journal of Hydrogen Energy, 2017, 42, 7220-7225.                                                                                          | 3.8 | 24        |
| 391 | Effectively stabilizing 5†V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene<br>fluoride coating. Applied Surface Science, 2018, 455, 349-356.                                                                                | 3.1 | 24        |
| 392 | A high-capacity organic anode with self-assembled morphological transformation for green<br>lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 22621-22630.                                                                          | 5.2 | 24        |
| 393 | Facile one-step vulcanization of copper foil towards stable Li metal anode. Science China Materials, 2020, 63, 1663-1671.                                                                                                                           | 3.5 | 24        |
| 394 | Fast microwave-assisted synthesis of Nb-doped Li4Ti5O12 for high-rate lithium-ion batteries. Journal of<br>Nanoparticle Research, 2014, 16, 1.                                                                                                      | 0.8 | 23        |
| 395 | Immobilizing an organic electrode material through π–π interaction for high-performance Li-organic<br>batteries. Journal of Materials Chemistry A, 2019, 7, 22398-22404.                                                                            | 5.2 | 23        |
| 396 | Synthesis of porous ZnxCo3-xO4 hollow nanoboxes derived from metal-organic frameworks for lithium and sodium storage. Electrochimica Acta, 2020, 335, 135694.                                                                                       | 2.6 | 23        |

| #   | Article                                                                                                                                                                                                                                      | IF                | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 397 | Simultaneously suppressing lithium dendrite growth and Mn dissolution by integration of a safe<br>inorganic separator in a LiMn <sub>2</sub> O <sub>4</sub> /Li battery. Journal of Materials Chemistry A,<br>2020, 8, 3859-3864.            | 5.2               | 23        |
| 398 | An oxygen vacancy-rich ZnO layer on garnet electrolyte enables dendrite-free solid state lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133665.                                                                           | 6.6               | 23        |
| 399 | Deciphering the Role of Fluoroethylene Carbonate towards Highly Reversible Sodium Metal Anodes.<br>Research, 2022, 2022, 9754612.                                                                                                            | 2.8               | 23        |
| 400 | Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity. Nanoscale, 2015, 7, 1963-1969.                                                                                                     | 2.8               | 22        |
| 401 | Improving the electrochemical performance of<br>Li <sub>1.2</sub> Ni <sub>0.13</sub> Co <sub>0.13</sub> Mn <sub>0.54</sub> O <sub>2</sub> by Li-ion<br>conductor. RSC Advances, 2016, 6, 63749-63753.                                        | 1.7               | 22        |
| 402 | Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties. Nanoscale, 2016, 8, 12215-12220.                                                                                                        | 2.8               | 22        |
| 403 | Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for<br>high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2017, 19, 2567-2573.                                                | 1.3               | 22        |
| 404 | Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.                                                                                                      | 8.2               | 22        |
| 405 | Gram‣cale Synthesis of Nanosized Li <sub>3</sub> HoBr <sub>6</sub> Solid Electrolyte for<br>All‣olid‣tate Li‣e Battery. Small Methods, 2021, 5, e2101002.                                                                                    | 4.6               | 22        |
| 406 | Electronic Localization Derived Excellent Stability of Li Metal Anode with Ultrathin Alloy. Advanced Science, 2022, 9, e2105656.                                                                                                             | 5.6               | 22        |
| 407 | Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat. Chemistry of Materials, 2012, 24, 1401-1403.                                                                                                              | 3.2               | 21        |
| 408 | Synthesis of WO <sub><i>n</i></sub> â€WX <sub>2</sub> ( <i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for<br>Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition,<br>2017, 56, 10486-10490. | 7.2               | 21        |
| 409 | A Synergistic Naâ€Mnâ€O Composite Cathodes for Highâ€Capacity Naâ€Ion Storage. Advanced Energy Materials<br>2018, 8, 1802180.                                                                                                                | ' 10.2            | 21        |
| 410 | A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior<br>for Copper in Highâ€Rate and Long ycling Sodiumâ€Ion Batteries. Angewandte Chemie, 2019, 131, 1426-1430                                     | ). <sup>1.6</sup> | 21        |
| 411 | Water-Stable Cathode for High Rate Na-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15220-15227.                                                                                                                              | 4.0               | 21        |
| 412 | A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. ACS<br>Applied Materials & Interfaces, 2021, 13, 38194-38201.                                                                                 | 4.0               | 21        |
| 413 | Boosting Zn <sup>2+</sup> Diffusion via Tunnel-Type Hydrogen Vanadium Bronze for<br>High-Performance Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 7909-7916.                                                            | 4.0               | 21        |
| 414 | Solid/Quasiâ€ <b>5</b> olid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.                                                                                                                                 | 5.2               | 21        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Direct planting of ultrafine MoO <sub>2+δ</sub> nanoparticles in carbon nanofibers by<br>electrospinning: self-supported mats as binder-free and long-life anodes for lithium-ion batteries.<br>Physical Chemistry Chemical Physics, 2016, 18, 19832-19837. | 1.3 | 20        |
| 416 | Construction of an N-Decorated Carbon-Encapsulated W <sub>2</sub> C/WP Heterostructure as an<br>Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. ACS Applied<br>Materials & Interfaces, 2021, 13, 53955-53964.           | 4.0 | 20        |
| 417 | Insight into the electrochemical behavior of lithium-sulfur cells assisted by potassium hydroxide activated carbon black and polyaniline nanorods. Electrochimica Acta, 2016, 209, 643-653.                                                                 | 2.6 | 19        |
| 418 | Effect of pyrolysis temperature of 3D graphene/carbon nanotubes anode materials on yield of carbon nanotubes and their electrochemical properties for Na-ion batteries. Chemical Engineering Journal, 2017, 317, 793-799.                                   | 6.6 | 19        |
| 419 | High areal capacity, long cycle life Li-O2 cathode based on highly elastic gel granules. Nano Energy,<br>2018, 47, 353-360.                                                                                                                                 | 8.2 | 19        |
| 420 | Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Applied Materials<br>& Interfaces, 2022, 14, 9097-9105.                                                                                                                   | 4.0 | 19        |
| 421 | In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for<br>Highâ€Performance Aqueous Zn–SeS <sub>2</sub> Batteries. Small, 2022, 18, e2200567.                                                                               | 5.2 | 19        |
| 422 | Synthesis and assembly of zinc hydroxide sulfate large flakes: Application in gas sensor based on a novel surface mount technology. Sensors and Actuators B: Chemical, 2010, 147, 495-501.                                                                  | 4.0 | 18        |
| 423 | Facile synthesis of porous InNbO4 nanofibers by electrospinning and their enhanced<br>visible-light-driven photocatalytic properties. Journal of Alloys and Compounds, 2014, 592, 301-305.                                                                  | 2.8 | 18        |
| 424 | Comparative assessment of synthetic strategies toward active platinum–rhodium–tin<br>electrocatalysts for efficient ethanol electro-oxidation. Journal of Power Sources, 2015, 294, 299-304.                                                                | 4.0 | 18        |
| 425 | A new layered titanate Na <sub>2</sub> Li <sub>2</sub> Ti <sub>5</sub> O <sub>12</sub> as a<br>high-performance intercalation anode for sodium-ion batteries. Journal of Materials Chemistry A,<br>2017, 5, 22208-22215.                                    | 5.2 | 18        |
| 426 | Towards fast and ultralong-life Li-ion battery anodes: embedding ultradispersed TiO2 quantum dots<br>into three-dimensional porous graphene-like networks. Electrochimica Acta, 2017, 246, 1183-1192.                                                       | 2.6 | 18        |
| 427 | Hydrogen plasma reduced potassium titanate as a high power and ultralong lifespan anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 22037-22042.                                                                          | 5.2 | 18        |
| 428 | Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for<br>High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5214-5218.                                                                                  | 2.5 | 17        |
| 429 | An effective dual-modification strategy to enhance the performance of<br>LiNi <sub>0.6</sub> Co <sub>0.2</sub> Mn <sub>0.2</sub> O <sub>2</sub> cathode for Li-ion batteries.<br>Nanoscale, 2021, 13, 4670-4677.                                            | 2.8 | 17        |
| 430 | Airâ€Stable Li <i><sub>x</sub></i> Al Foil as Freeâ€Standing Electrode with Improved Electrochemical<br>Ductility by Shotâ€Peening Treatment. Advanced Functional Materials, 2021, 31, 2100978.                                                             | 7.8 | 17        |
| 431 | Al doping effects on LiCrTiO <sub>4</sub> as an anode for lithium-ion batteries. RSC Advances, 2017, 7, 4791-4797.                                                                                                                                          | 1.7 | 16        |
| 432 | Hetero-structured La0.5Sr0.5CoO3–/LaSrCoO4± cathode with high electro-catalytic activity for solid-oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 29463-29471.                                                                       | 3.8 | 16        |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | Controllable growth of Au nanostructures onto MoS <sub>2</sub> nanosheets for dual-modal<br>imaging and photothermal–radiation combined therapy. Nanoscale, 2019, 11, 22788-22795.                                          | 2.8  | 16        |
| 434 | Enabling Seleniumâ€Rich Se <i><sub>x</sub></i> S <i><sub>y</sub></i> Cathodes to Work in<br>Carbonateâ€Based Electrolytes. Advanced Energy Materials, 2022, 12, 2102832.                                                    | 10.2 | 16        |
| 435 | Modification Strategies of Layered Double Hydroxides for Superior Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .                                                                                  | 2.8  | 16        |
| 436 | Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries.<br>Chemical Engineering Journal, 2022, 435, 135149.                                                                            | 6.6  | 16        |
| 437 | Morphology-controllable solvothermal synthesis of nanoscale LiFePO4 in a binary solvent. Science Bulletin, 2012, 57, 4170-4175.                                                                                             | 1.7  | 15        |
| 438 | Patterned polymernanowire arrays as an effective protein immobilizer for biosensing and HIV detection. Nanoscale, 2013, 5, 527-531.                                                                                         | 2.8  | 15        |
| 439 | One-pot synthesized hetero-structured Ca3Co2O6/La0.6Ca0.4CoO3 dual-phase composite cathode materials for solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 12750-12760.                           | 3.8  | 15        |
| 440 | SnSb/TiO <sub>2</sub> /C nanocomposite fabricated by high energy ball milling for high-performance<br>lithium-ion batteries. RSC Advances, 2016, 6, 32462-32466.                                                            | 1.7  | 15        |
| 441 | Enhancing the Interfacial Ionic Transport via <i>in Situ</i> 3D Composite Polymer Electrolytes for Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 7200-7207.                                         | 2.5  | 15        |
| 442 | Implanting a Fireâ€Extinguishing Alkyl in Sodium Metal Battery Electrolytes via a Functional Molecule.<br>Advanced Functional Materials, 2022, 32, 2109378.                                                                 | 7.8  | 15        |
| 443 | Interphase Formed at<br>Li <sub>6.4</sub> La <sub>3</sub> Zr <sub>1.4</sub> Ta <sub>0.6</sub> O <sub>12</sub> /Li Interface Enables<br>Cycle Stability for Solid‣tate Batteries. Advanced Functional Materials, 2022, 32, . | 7.8  | 15        |
| 444 | Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage<br>Aqueous Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17585-17593.                                  | 4.0  | 15        |
| 445 | Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal<br>Batteries via <i>In Situ</i> Electropolymerization. ACS Applied Materials & Interfaces, 2022, 14,<br>21018-21027.     | 4.0  | 15        |
| 446 | Metal-organic frameworks-derived NiSe@RGO composites for high-performance asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 919, 116548.                                                            | 1.9  | 15        |
| 447 | Large-scale synthesis of Ag1.8Mn8O16 nanorods and their electrochemical lithium-storage properties.<br>Journal of Nanoparticle Research, 2011, 13, 3139-3148.                                                               | 0.8  | 14        |
| 448 | Phase control of TiO 2 nanobelts by microwave irradiation as anode materials with tunable<br>Li-diffusion kinetics. Materials Research Bulletin, 2017, 96, 365-371.                                                         | 2.7  | 14        |
| 449 | A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries. Journal of Applied Electrochemistry, 2018, 48, 1265-1271.                                                                           | 1.5  | 14        |
| 450 | A Li–O <sub>2</sub> battery cathode with vertical mass/charge transfer pathways. Journal of<br>Materials Chemistry A, 2019, 7, 3000-3005.                                                                                   | 5.2  | 14        |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | A pretreatment method to form high-quality LiF-enriched solid-electrolyte interfaces for Li anode<br>protection in Li–O <sub>2</sub> batteries. Journal of Materials Chemistry A, 2020, 8, 14198-14204.                                                               | 5.2 | 14        |
| 452 | Microwave-assisted synthesis of self-assembled BiO1.84H0.08 hierarchical nanostructures as a new photocatalyst. Applied Surface Science, 2014, 319, 244-249.                                                                                                          | 3.1 | 13        |
| 453 | Facile Synthesis of Sn/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites with Superb Lithium Storage Properties. Nanomaterials, 2019, 9, 1084.                                                                                                                     | 1.9 | 13        |
| 454 | A Facile Synthesis of Monodispersed Na <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub><br>Nanospheres Anchored on Cellular Graphene Oxide as a Self-supporting Cathode for High-Rate Sodium<br>Storage. ACS Applied Energy Materials, 2020, 3, 2867-2872. | 2.5 | 13        |
| 455 | Bioâ€Derived Materials Achieving High Performance in Alkali Metal–Chalcogen Batteries. Advanced<br>Functional Materials, 2021, 31, 2008354.                                                                                                                           | 7.8 | 13        |
| 456 | Reactivating Dead Li by Shuttle Effect for High-Performance Anode-Free Li Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120535.                                                                                                                 | 1.3 | 13        |
| 457 | Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of Highâ€Voltage<br>LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> Spinel Cathode Materials. Advanced Functional<br>Materials, 2022, 32, .                                             | 7.8 | 13        |
| 458 | Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible<br>Electrodes. Advanced Materials Technologies, 2017, 2, 1600231.                                                                                                             | 3.0 | 12        |
| 459 | Enhanced capability and cyclability of flexible TiO2-reduced graphene oxide hybrid paper electrode by incorporating monodisperse anatase TiO2 quantum dots. Electrochimica Acta, 2018, 259, 474-484.                                                                  | 2.6 | 12        |
| 460 | Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied<br>Materials & Interfaces, 2020, 12, 39335-39341.                                                                                                                   | 4.0 | 12        |
| 461 | In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode. Energy Storage Materials, 2020, 31, 164-171.                                                                                 | 9.5 | 12        |
| 462 | In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable lithium-sulfur batteries. Science China Materials, 2021, 64, 2127-2138.                                                                                  | 3.5 | 12        |
| 463 | A High Rate and Stable Hybrid Li/Naâ€lon Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.<br>Small, 2021, 17, e2101650.                                                                                                                                 | 5.2 | 12        |
| 464 | Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated<br>Lithium Storage Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 15470-15476.                                                                                  | 4.0 | 11        |
| 465 | Preparation of Ultrathin Twoâ€Dimensional<br>Ti <sub><i>x</i></sub> Ta <sub>1â^'<i>x</i></sub> S <sub><i>y</i></sub> O <sub><i>z</i></sub> Nanosheets<br>as Highly Efficient Photothermal Agents. Angewandte Chemie, 2017, 129, 7950-7954.                            | 1.6 | 11        |
| 466 | Synthesis of Na Mn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 732, 88-94.                                                                                  | 2.8 | 11        |
| 467 | Facile ball-milled synthesis of SnS2-carbon nanocomposites with superior lithium storage. Progress in Natural Science: Materials International, 2018, 28, 676-682.                                                                                                    | 1.8 | 11        |
| 468 | Porous carbon adsorption layer enabling highly reversible redox-reaction of a high potential organic electrode material for sodium ion batteries. RSC Advances, 2018, 8, 24900-24905.                                                                                 | 1.7 | 11        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Enhancement of photocatalytic H2 production by metal complex electrostatic adsorption on TiO2 (B)<br>nanosheets. Journal of Materials Chemistry A, 2019, 7, 3797-3804.                                                                                  | 5.2 | 11        |
| 470 | Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst.<br>Science China Materials, 2019, 62, 359-367.                                                                                                            | 3.5 | 11        |
| 471 | Stable Room-Temperature Sodium–Sulfur Batteries in Ether-Based Electrolytes Enabled by the<br>Fluoroethylene Carbonate Additive. ACS Applied Materials & Interfaces, 2022, 14, 6658-6666.                                                               | 4.0 | 11        |
| 472 | <scp>Electronegativityâ€Induced Singleâ€Ion</scp> Conducting Polymer Electrolyte for<br><scp>Solidâ€State</scp> Lithium Batteries. Energy and Environmental Materials, 2023, 6, .                                                                       | 7.3 | 11        |
| 473 | Improving the cycling stability of lithium metal anodes using Cu3N-modified Cu foil as a current collector. Science China Materials, 2022, 65, 2385-2392.                                                                                               | 3.5 | 11        |
| 474 | Review—Double-Perovskite Electrode Design Strategies and Research Progress for SOFCs. Journal of the Electrochemical Society, 2022, 169, 064508.                                                                                                        | 1.3 | 11        |
| 475 | Enhanced magnetoresistance in La07Sr03MnO3 nanoscaledgranular composites. Science in China<br>Series B: Chemistry, 2000, 43, 561-566.                                                                                                                   | 0.8 | 10        |
| 476 | A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for<br>Lithium Ion Battery. Journal of Nanoscience and Nanotechnology, 2016, 16, 6494-6497.                                                                    | 0.9 | 10        |
| 477 | Self-template synthesis of Li 1.13 Ni 0.30 Mn 0.57 O 2 anothorn spheres and nanorods as high-performance cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 658, 867-874.                                              | 2.8 | 10        |
| 478 | Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries:<br>Na <sub>1.5</sub> Ti <sub>1.5</sub> Fe <sub>0.5</sub> (PO <sub>4</sub> ) <sub>3</sub> . Journal of<br>Materials Chemistry A, 2019, 7, 24953-24963. | 5.2 | 10        |
| 479 | A Multifunctional Inorganic Composite Separator for Stable High-Safety Lithium–Sulfur Batteries.<br>ACS Applied Energy Materials, 2020, 3, 10139-10146.                                                                                                 | 2.5 | 10        |
| 480 | Novel double-cathode configuration to improve the cycling stability of lithium–sulfur battery. RSC<br>Advances, 2015, 5, 14196-14201.                                                                                                                   | 1.7 | 9         |
| 481 | Core@shell Sb@Sb <sub>2</sub> O <sub>3</sub> nanoparticles anchored on 3D nitrogen-doped carbon<br>nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.                                                 | 2.2 | 9         |
| 482 | Twoâ€Plateau Li‧e Chemistry for High Volumetric Capacity Se Cathodes. Angewandte Chemie, 2020, 132,<br>14012-14018.                                                                                                                                     | 1.6 | 9         |
| 483 | Rational construction of hollow nanoboxes for long cycle life alkali metal ion batteries. Journal of<br>Materials Science and Technology, 2022, 102, 46-55.                                                                                             | 5.6 | 9         |
| 484 | Sensitive sensors based on bilayer organic field-effect transistors for detecting lithium-ion battery electrolyte leakage. Science China Materials, 2022, 65, 1187-1194.                                                                                | 3.5 | 9         |
| 485 | Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie, 2017, 129, 13978-13982.                                                                                                                                            | 1.6 | 8         |
| 486 | 1,3-Dimethyl-2-imidazolidinone: an ideal electrolyte solvent for high-performance Li–O2 battery with<br>pretreated Li anode. Science Bulletin, 2022, 67, 141-150.                                                                                       | 4.3 | 8         |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 487 | Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield<br>for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, e202114789.                                                | 1.6  | 8         |
| 488 | Synthesis of WO <sub><i>n</i></sub> â€WX <sub>2</sub> ( <i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for<br>Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.                   | 1.6  | 7         |
| 489 | Ca3Co2O6Ce0.8Sm0.2O1.9 composite cathode material for solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 753, 292-299.                                                                                                   | 2.8  | 7         |
| 490 | High lithium sulfide loading electrodes for practical Li/S cells with high specific energy. Nano Energy, 2019, 64, 103891.                                                                                                           | 8.2  | 7         |
| 491 | Intrinsically Optimizing Charge Transfer via Tuning Charge/Discharge Mode for Lithium–Oxygen<br>Batteries. Small, 2019, 15, 1900154.                                                                                                 | 5.2  | 7         |
| 492 | Solid electrolyte interphase in water-in-salt electrolytes. Science China Materials, 2021, 64, 1571-1579.                                                                                                                            | 3.5  | 7         |
| 493 | A General Method for the Synthesis of Hybrid Nanostructures Using MoSe <sub>2</sub><br>Nanosheet-Assembled Nanospheres as Templates. Research, 2019, 2019, 6439734.                                                                  | 2.8  | 7         |
| 494 | Precisely visit the performance modulation of functionalized separator in Li-S batteries via consecutive multiscale analysis. Energy Storage Materials, 2022, 49, 85-92.                                                             | 9.5  | 7         |
| 495 | A high-capacity Li-ion/Li–oxygen hybrid cathode. Journal of Materials Chemistry A, 2015, 3, 13628-13631.                                                                                                                             | 5.2  | 6         |
| 496 | Gamma titanium phosphate as an electrode material for Li-ion and Na-ion storage: performance and<br>mechanism. Journal of Materials Chemistry A, 2016, 4, 18084-18090.                                                               | 5.2  | 6         |
| 497 | Insight into the Function Mechanism of the Carbon Interlayer in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A1880-A1885.                                                                            | 1.3  | 6         |
| 498 | Rotating-disk electrode analysis of the oxidation behavior of dissolved Li <sub>2</sub> O <sub>2</sub><br>in Li–O <sub>2</sub> batteries. RSC Advances, 2018, 8, 28496-28502.                                                        | 1.7  | 6         |
| 499 | Enhancing Stability of Exenatide-Containing Pressurized Metered-Dose Inhaler Via Reverse<br>Microemulsion System. AAPS PharmSciTech, 2018, 19, 2499-2508.                                                                            | 1.5  | 6         |
| 500 | Thermally Aged Li–Mn–O Cathode with Stabilized Hybrid Cation and Anion Redox. Nano Letters, 2021, 21, 4176-4184.                                                                                                                     | 4.5  | 6         |
| 501 | Enhanced electrochemical activity in Ca3Co2O6 cathode for solid-oxide fuelÂcells by Cu substitution.<br>Journal of Materiomics, 2015, 1, 60-67.                                                                                      | 2.8  | 5         |
| 502 | Oxygen Reduction: Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction<br>Resistant L1 <sub>0</sub> â€PtZn Fuel Cell Cathode (Adv. Energy Mater. 29/2020). Advanced Energy<br>Materials, 2020, 10, 2070124. | 10.2 | 5         |
| 503 | A novel flowerâ€ike metalâ€based oxides with crossâ€inked networks for rapid lithiumâ€ion storage.<br>International Journal of Energy Research, 2020, 44, 4910-4918.                                                                 | 2.2  | 5         |
| 504 | A Supramolecular Complex of C <sub>60</sub> –S with Highâ€Density Active Sites as a Cathode for<br>Lithium–Sulfur Batteries. Angewandte Chemie, 2021, 133, 14434-14439.                                                              | 1.6  | 5         |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 505 | A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal<br>anodes. Journal of Materials Chemistry A, 2021, 9, 25495-25501.                                       | 5.2  | 5         |
| 506 | Thickness-controllable Li–Zn composite anode for high-energy and low-N/P ratio lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 11246-11253.                                           | 5.2  | 5         |
| 507 | Rapid-Heating-Triggered <i>in Situ</i> Solid-State Transformation of Amorphous TiO <sub>2</sub><br>Nanotubes into Well-Defined Anatase Nanocrystals. Crystal Growth and Design, 2019, 19, 1086-1094.       | 1.4  | 4         |
| 508 | Interactions of sub-five-nanometer diameter colloidal palladium nanoparticles in solution<br>investigated <i>via</i> liquid cell transmission electron microscopy. RSC Advances, 2020, 10,<br>34781-34787. | 1.7  | 4         |
| 509 | A long-life and safe lithiated graphite-selenium cell with competitive gravimetric and volumetric energy densities. Journal of Energy Chemistry, 2021, 60, 556-563.                                        | 7.1  | 4         |
| 510 | Synthesis and modification of well-ordered layered cathode oxide LiNi2/3Mn1/3O2. Science Bulletin, 2010, 55, 3419-3423.                                                                                    | 1.7  | 3         |
| 511 | Evaluation of Ca 3 (Co,M) 2 O 6 (M=Co, Fe, Mn, Ni) as new cathode materials for solid-oxide fuel cells.<br>Progress in Natural Science: Materials International, 2015, 25, 370-378.                        | 1.8  | 3         |
| 512 | Sodium Ion Batteries: A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal<br>Prussian Blue Analogs (Adv. Energy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870048.   | 10.2 | 3         |
| 513 | High-performance low-temperature solid oxide fuel cells prepared by sol impregnation. Journal of<br>Alloys and Compounds, 2019, 810, 151936.                                                               | 2.8  | 3         |
| 514 | LaSrCoO4±@La0.5Sr0.5CoO3- core-shell hybrid as the cathode materials for solid oxide fuel cells.<br>Journal of Alloys and Compounds, 2020, 819, 152996.                                                    | 2.8  | 3         |
| 515 | Coordination induced electron redistribution to achieve highly reversible Li-ion insertion chemistry<br>in metal–organic frameworks. Chemical Communications, 2020, 56, 6424-6427.                         | 2.2  | 3         |
| 516 | Structural, magnetic and transport properties of Sc-doped La0.7Sr0.3MnO3. Science Bulletin, 2000, 45, 810-814.                                                                                             | 1.7  | 2         |
| 517 | Flower-Like K0.27MnO2 As Cathode Materials for High-Performance Aqueous Sodium-Ion Batteries. ECS<br>Meeting Abstracts, 2013, , .                                                                          | 0.0  | 2         |
| 518 | The Use of Spray Drying in Large Batch Synthesis of KBâ€&@rGO Composite for Highâ€Performance<br>Lithiumâ€&ulfur Batteries. ChemistrySelect, 2018, 3, 4271-4276.                                           | 0.7  | 2         |
| 519 | Lithiumâ€Metal Batteries: Polycationic Polymer Layer for Air‣table and Dendriteâ€Free Li Metal Anodes in<br>Carbonate Electrolytes (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170087.           | 11.1 | 2         |
| 520 | "First-Cycle Effect―of Trace Li <sub>2</sub> S in a High-Performance Sulfur Cathode. ACS Applied<br>Materials & Interfaces, 2022, 14, 698-705.                                                             | 4.0  | 2         |
| 521 | Batteries: Snâ€Alloy Foil Electrode with Mechanical Prelithiation: Fullâ€Cell Performance up to 200<br>Cycles (Adv. Energy Mater. 42/2019). Advanced Energy Materials, 2019, 9, 1970165.                   | 10.2 | 1         |
| 522 | In Honor of Nobel Laureate John B. Goodenough. Advanced Energy Materials, 2021, 11, 2002817.                                                                                                               | 10.2 | 1         |

| #   | Article                                                                                                                                                                                                                          | IF                | CITATIONS   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 523 | Reversible lithium storage in sp2 hydrocarbon frameworks. Journal of Energy Chemistry, 2022, 66, 161-167.                                                                                                                        | 7.1               | 1           |
| 524 | é",硫电æ±ç»¼å•̂性èf½å倿æå‡ç–ç•¥. Chinese Science Bulletin, 2022, , .                                                                                                                                                                 | 0.4               | 1           |
| 525 | One-Step Preparation of Ag-Loaded Bi4Ti3O12 Nanofibers By Electrospinning and Their Photocatalytic Activity. ECS Meeting Abstracts, 2013, , .                                                                                    | 0.0               | 0           |
| 526 | Highlights of Research Activities in Advanced Materials at Tongji University. Advanced Materials, 2018,<br>30, 1801516.                                                                                                          | 11.1              | 0           |
| 527 | Correlation between Mechanical Strength of Amorphous TiO <sub>2</sub> Nanotubes and Their Solid State Crystallization Pathways. ChemistrySelect, 2018, 3, 10711-10716.                                                           | 0.7               | 0           |
| 528 | Ultrathin Conductive Interlayers: Ultrathin Conductive Interlayer with Highâ€Density Antisite Defects<br>for Advanced Lithium–Sulfur Batteries (Adv. Funct. Mater. 2/2021). Advanced Functional Materials,<br>2021, 31, 2170012. | 7.8               | 0           |
| 529 | Imaging Techniques: Recent Progress on Advanced Imaging Techniques for Lithiumâ€lon Batteries (Adv.) Tj ETQq                                                                                                                     | 1 1 0,784<br>10.2 | 314 rgBT /O |
|     |                                                                                                                                                                                                                                  |                   |             |

530 Interdisciplinary research of materials and energy in honor of Nobel laureate John B. Goodenough. , 2022, 1, 321-322.

0