David L Sedlak

List of Publications by Citations

Source: https://exaly.com/author-pdf/7988460/david-l-sedlak-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

116 10,270 51 101 h-index g-index citations papers 6.83 11,917 123 9.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
116	Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry. <i>Environmental Engineering Science</i> , 2003 , 20, 449-469	2	652
115	Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water. <i>Environmental Science & Environmental Sci</i>	10.3	526
114	Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. <i>Environmental Science & Environmental Scien</i>	10.3	519
113	N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. <i>Environmental Engineering Science</i> , 2003 , 20, 389-404	2	501
112	Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. <i>Environmental Science & Environmental Scie</i>	10.3	449
111	Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. <i>Environmental Science & Environmental Sc</i>	10.3	399
110	Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 133-139	3.8	308
109	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. <i>Environmental Science & Environmental Science </i>	10.3	277
108	A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. <i>Environmental Science & Technology</i> , 2009 , 43, 8930-5	10.3	271
107	Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. <i>Environmental Science & Environmental Science & Envi</i>	10.3	269
106	In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)-and Mn(IV)-containing oxides and aquifer materials. <i>Environmental Science & Environmental Science & En</i>	10.3	265
105	Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. <i>Environmental Science & Environmental Science & Environme</i>	10.3	252
104	Chemistry. The chlorine dilemma. <i>Science</i> , 2011 , 331, 42-3	33.3	251
103	A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. <i>Water Research</i> , 2003 , 37, 3733-41	12.5	229
102	Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. <i>Environmental Science & Environmental Science & E</i>	10.3	190
101	Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. <i>Environmental Science & Environmental Scie</i>	10.3	184
100	A changing framework for urban water systems. <i>Environmental Science & Technology</i> , 2013 , 47, 10	7210.6	180

(2015-2017)

99	Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge. <i>Environmental Science & Environmental Scienc</i>	10.3	179
98	Precursors of N-Nitrosodimethylamine in Natural Waters. <i>Environmental Science & amp; Technology</i> , 2003 , 37, 1331-1336	10.3	161
97	Attenuation of wastewater-derived contaminants in an effluent-dominated river. <i>Environmental Science & Environmental </i>	10.3	160
96	Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. <i>Environmental Science & Environmental Science & Envir</i>	10.3	152
95	Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. <i>Environmental Science & Environmental </i>	10.3	150
94	Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area. <i>Environmental Science & Environmental Science & Envir</i>	1 4 -53	149
93	Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms. <i>Environmental Science & Environmental Scien</i>	10.3	143
92	Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands. <i>Environmental Science & Environmental Science & Environme</i>	10.3	116
91	Sources and fate of nitrosodimethylamine and its precursors in municipal wastewater treatment plants. <i>Water Environment Research</i> , 2005 , 77, 32-9	2.8	116
90	Wastewater-Derived Dissolved Organic Nitrogen: Analytical Methods, Characterization, and Effects Review. <i>Critical Reviews in Environmental Science and Technology</i> , 2006 , 36, 261-285	11.1	111
89	Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. <i>Water Research</i> , 2012 , 46, 6454-62	12.5	110
88	Engineered Infiltration Systems for Urban Stormwater Reclamation. <i>Environmental Engineering Science</i> , 2013 , 30, 437-454	2	109
87	Chemistry of Superoxide Radical in Seawater: Reactions with Organic Cu Complexes. <i>Environmental Science & Environmental Scien</i>	10.3	107
86	Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum Capricornutum. <i>Water Research</i> , 2004 , 38, 3189-96	12.5	98
85	Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents. <i>Science of the Total Environment</i> , 2015 , 511, 47-53	10.2	96
84	The Innovation Deficit in Urban Water: The Need for an Integrated Perspective on Institutions, Organizations, and Technology. <i>Environmental Engineering Science</i> , 2013 , 30, 395-408	2	94
83	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. <i>Environmental Science & Enhance Water Security</i> , 51, 10274-10281	10.3	93
82	Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. <i>Environmental Science & Environmental Sc</i>	10.3	92

81	Chemistry of the Superoxide Radical (O2-) in Seawater: Reactions with Inorganic Copper Complexes. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 5693-5700	2.8	89
80	Beyond User Acceptance: A Legitimacy Framework for Potable Water Reuse in California. <i>Environmental Science & Environmental S</i>	10.3	85
79	Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. <i>Water Research</i> , 2019 , 154, 1-11	12.5	83
78	Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. <i>Environmental Science & Environmental Scie</i>	3- 1 388!	5 ⁸²
77	Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents. <i>Environmental Engineering Science</i> , 2013 , 30, 421-436	2	77
76	Electrochemical Transformation of Trace Organic Contaminants in the Presence of Halide and Carbonate Ions. <i>Environmental Science & Environmental Scie</i>	10.3	73
75	Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. <i>Chemosphere</i> , 2018 , 206, 457-464	8.4	70
74	Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate. <i>Frontiers in Ecology and the Environment</i> , 2015 , 13, 477-485	5.5	69
73	Inhibitory effect of dissolved silica on HDDdecomposition by iron(III) and manganese(IV) oxides: implications for HDDased in situ chemical oxidation. <i>Environmental Science & Environmental Science &</i>	10.3	66
72	Formation and fate of chlorination by-products in reverse osmosis desalination systems. <i>Water Research</i> , 2010 , 44, 1616-26	12.5	66
71	A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. <i>Accounts of Chemical Research</i> , 2019 , 52, 615-622	24.3	64
70	Dissolution of Mesoporous Silica Supports in Aqueous Solutions: Implications for Mesoporous Silica-based Water Treatment Processes. <i>Applied Catalysis B: Environmental</i> , 2012 , 126, 258-264	21.8	62
69	Sources and Environmental Fate of Strongly Complexed Nickel in Estuarine Waters: The Role of Ethylenediaminetetraacetate. <i>Environmental Science & Environmental Science & Env</i>	10.3	62
68	Biotransformation of trace organic contaminants in open-water unit process treatment wetlands. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	58
67	Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2311-2	23 ¹¹ 6 ⁵	56
66	Uptake of EDTA-complexed Pb, Cd and Fe by solution- and sand-cultured Brassica juncea. <i>Plant and Soil</i> , 2006 , 286, 377-391	4.2	53
65	The Role of Reactive Nitrogen Species in Sensitized Photolysis of Wastewater-Derived Trace Organic Contaminants. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	49
64	Minimization of NDMA Formation during Chlorine Disinfection of Municipal Wastewater by Application of Pre-Formed Chloramines. <i>Environmental Engineering Science</i> , 2005 , 22, 882-890	2	48

(2015-2008)

63	Use of biodegradable dissolved organic carbon (BDOC) to assess the potential for transformation of wastewater-derived contaminants in surface waters. <i>Water Research</i> , 2008 , 42, 2943-52	12.5	47	
62	Superior Removal of Disinfection Byproduct Precursors and Pharmaceuticals from Wastewater in a Staged Anaerobic Fluidized Membrane Bioreactor Compared to Activated Sludge. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 459-464	11	46	
61	Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	46	
60	Chemisorption of Perfluorooctanoic Acid on Powdered Activated Carbon Initiated by Persulfate in Aqueous Solution. <i>Environmental Science & Environmental Science & Environment</i>	10.3	44	
59	Nitrate removal in shallow, open-water treatment wetlands. <i>Environmental Science & Environmental Scie</i>	10.3	44	
58	Odorous compounds in municipal wastewater effluent and potable water reuse systems. <i>Environmental Science & Environmental Sci</i>	10.3	44	
57	A framework for identifying characteristic odor compounds in municipal wastewater effluent. <i>Water Research</i> , 2012 , 46, 5970-80	12.5	43	
56	Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. <i>Water Research</i> , 2016 , 88, 481-491	12.5	42	
55	The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes. <i>Water Environment Research</i> , 2005 , 77, 24-31	2.8	39	
54	Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 5429-42	4.4	37	
53	Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	36	
52	Polymer-clay composite geomedia for sorptive removal of trace organic compounds and metals in urban stormwater. <i>Water Research</i> , 2019 , 157, 454-462	12.5	35	
51	Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	34	
50	The Role of Iron Coordination in the Production of Reactive Oxidants from Ferrous Iron Oxidation by Oxygen and Hydrogen Peroxide. <i>ACS Symposium Series</i> , 2011 , 177-197	0.4	32	
49	Biotransformation of AFFF Component 6:2 Fluorotelomer Thioether Amido Sulfonate Generates 6:2 Fluorotelomer Thioether Carboxylate under Sulfate-Reducing Conditions. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 283-288	11	30	
48	Effect of metal complexation on the degradation of dithiocarbamate fungicides. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 820-826	3.8	28	
47	Hydrophilic trace organic contaminants in urban stormwater: occurrence, toxicological relevance, and the need to enhance green stormwater infrastructure. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 15-44	4.2	28	
46	Rapid chiral separation of atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid using supercritical fluid chromatography-tandem mass spectrometry - Application to wetland microcosms. <i>Journal of Chromatography A</i> , 2015 , 1409, 251-8	4.5	27	

45	Chlorination of Phenols Revisited: Unexpected Formation of Instantanted C-Dicarbonyl Ring Cleavage Products. <i>Environmental Science & Environmental Sc</i>	10.3	27
44	Removal of nutrients, trace organic contaminants, and bacterial indicator organisms in a demonstration-scale unit process open-water treatment wetland. <i>Ecological Engineering</i> , 2017 , 109, 76-	.83 ⁹	24
43	Superselective Removal of Lead from Water by Two-Dimensional MoS Nanosheets and Layer-Stacked Membranes. <i>Environmental Science & Environmental Scienc</i>	10.3	24
42	Barriers to Innovation in Urban Wastewater Utilities: Attitudes of Managers in California. <i>Environmental Management</i> , 2016 , 57, 1204-16	3.1	24
41	Chemical Regeneration of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. <i>Environmental Science & Environmental Science </i>	10.3	23
40	Impact of iron amendment on net methylmercury export from tidal wetland microcosms. <i>Environmental Science & Environmental Sci</i>	10.3	22
39	Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community. <i>Environmental Science & Environmental Science & E</i>	10.3	20
38	A mixed-methods approach to strategic planning for multi-benefit regional water infrastructure. Journal of Environmental Management, 2019 , 233, 218-237	7.9	19
37	Urban Water-Supply Reinvention. <i>Daedalus</i> , 2015 , 144, 72-82	2	18
36	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic HO Production and UV Photolysis. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	15
35	Towards a New Paradigm of Urban Water Infrastructure: Identifying Goals and Strategies to Support Multi-Benefit Municipal Wastewater Treatment. <i>Water (Switzerland)</i> , 2018 , 10, 1127	3	15
34	The Unintended Consequences of the Reverse Osmosis Revolution. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 3999-4000	10.3	14
33	Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry 2001 , 20, 133		13
32	Identification of transformation products from Eblocking agents formed in wetland microcosms using LC-Q-ToF. <i>Journal of Mass Spectrometry</i> , 2016 , 51, 207-18	2.2	12
31	The Impact of Peroxymonocarbonate (HCO) on the Transformation of Organic Contaminants during Hydrogen Peroxide (HO) Chemical Oxidation (ISCO). <i>Environmental Science and Technology Letters</i> , 2019 , 6, 781-786	11	11
30	Ring-Cleavage Products Produced during the Initial Phase of Oxidative Treatment of Alkyl-Substituted Aromatic Compounds. <i>Environmental Science & Environmental Science & Envi</i>	10.3	10
29	Response to Comment on Bactors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen[[Environmental Science & 2008, 700], 2008, 42, 5378.	- 5 378	9
28	The third route: Using extreme decentralization to create resilient urban water systems. <i>Water Research</i> , 2020 , 185, 116276	12.5	9

(2019-2019)

27	Simplified Process to Determine Rate Constants for Sunlight-Mediated Removal of Trace Organic and Microbial Contaminants in Unit Process Open-Water Treatment Wetlands. <i>Environmental Engineering Science</i> , 2019 , 36, 43-59	2	9
26	Animal Manure Separation Technologies Diminish the Environmental Burden of Steroid Hormones. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 133-137	11	8
25	Interfacial Solar Evaporation by a 3D Graphene Oxide Stalk for Highly Concentrated Brine Treatment. <i>Environmental Science & Eamp; Technology</i> , 2021 , 55, 15435-15445	10.3	8
24	Sulfur Cycle in a Wetland Microcosm: Extended S-Stable Isotope Analysis and Mass Balance. <i>Environmental Science & Environmental Science & Environment</i>	10.3	8
23	Sorption of recalcitrant phosphonates in reverse osmosis concentrates and wastewater effluents - influence of metal ions. <i>Water Science and Technology</i> , 2021 , 83, 934-947	2.2	8
22	The use of manganese oxide-coated sand for the removal of trace metal ions from stormwater. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 593-603	4.2	7
21	Formation and Fate of Carbonyls in Potable Water Reuse Systems. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 10895-10903	10.3	7
20	Ubiquitous Production of Organosulfates During Treatment of Organic Contaminants with Sulfate Radicals. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 574-580	11	7
19	Establishment and convergence of photosynthetic microbial biomats in shallow unit process open-water wetlands. <i>Water Research</i> , 2018 , 133, 132-141	12.5	6
18	Transformation of Trace Organic Contaminants from Reverse Osmosis Concentrate by Open-Water Unit-Process Wetlands with and without Ozone Pretreatment. <i>Environmental Science & Emp;</i> Technology, 2020 , 54, 16176-16185	10.3	5
17	Nitrate removal from reverse osmosis concentrate in pilot-scale open-water unit process wetlands. <i>Environmental Science: Water Research and Technology</i> , 2021 , 7, 650-661	4.2	5
16	The horizontal levee: a multi-benefit nature-based treatment system that improves water quality and protects coastal levees from the effects of sea level rise. <i>Water Research X</i> , 2020 , 7, 100052	8.1	4
15	Reactions of Innsaturated Carbonyls with Free Chlorine, Free Bromine, and Combined Chlorine. <i>Environmental Science & Environmental Science & Environm</i>	10.3	4
14	Introduction: Reinventing Urban Water Infrastructure. Environmental Engineering Science, 2013, 30, 393	- <u>3</u> 94	3
13	Use of stable nitrogen isotopes to track plant uptake of nitrogen in a nature-based treatment system. <i>Water Research X</i> , 2020 , 9, 100070	8.1	3
12	Protecting the sewershed. Science, 2020, 369, 1429-1430	33.3	3
11	Enabling Water Reuse by Treatment of Reverse Osmosis Concentrate: The Promise of Constructed Wetlands. <i>ACS Environmental Au</i> ,		3
10	The Food-Environment Nexus. <i>Environmental Science & Environmental Science & Environment Nexus</i> , 6597-6598	10.3	2

9	Response to Comment on P olyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen <i>Environmental Science & Environmental </i>	10.3	2
8	Effect of metal complexation on the degradation of dithiocarbamate fungicides 2000 , 19, 820		2
7	Regenerated Manganese-Oxide Coated Sands: The Role of Mineral Phase in Organic Contaminant Reactivity. <i>Environmental Science & Environmental Science </i>	10.3	2
6	Under-reporting Potential of Perfluorooctanesulfonic Acid (PFOS) under High-Ionic Strength Conditions. <i>Environmental Science and Technology Letters</i> ,	11	1
5	Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry 2016 , 408, 5429		1
4	An electrochemical advanced oxidation process for the treatment of urban stormwater <i>Water Research X</i> , 2021 , 13, 100127	8.1	0
3	The third route: A techno-economic evaluation of extreme water and wastewater decentralization Water Research, 2022 , 218, 118408	12.5	0
2	Environmental Science & Technology Presents the 2017 Reviewer Awards. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 12047-12048	10.3	
1	Environmental Science & Technology Presents the 2018 Reviewer Awards. <i>Environmental Science</i> & amp; Technology, 2018 , 52, 11971-11972	10.3	