
Masanobu Nakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy Defends Cells Against Invading Group A Streptococcus. Science, 2004, 306, 1037-1040.	6.0	1,047
2	Genome Sequence of an M3 Strain of Streptococcus pyogenes Reveals a Large-Scale Genomic Rearrangement in Invasive Strains and New Insights into Phage Evolution. Genome Research, 2003, 13, 1042-1055.	2.4	248
3	Molecular Characterization of a Novel Fibronectin-binding Protein of Streptococcus pyogenesStrains Isolated from Toxic Shock-like Syndrome Patients. Journal of Biological Chemistry, 2002, 277, 47428-47435.	1.6	113
4	Streptococcus pyogenes Collagen Type I-binding Cpa Surface Protein. Journal of Biological Chemistry, 2005, 280, 33228-33239.	1.6	86
5	Cytochromec-mediated caspase-9 activation triggers apoptosis inStreptococcus pyogenes-infected epithelial cells. Cellular Microbiology, 2001, 3, 395-405.	1.1	80
6	Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease –Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Frontiers in Microbiology, 2018, 9, 53.	1.5	77
7	Streptococcus pyogenes Fibronectin-binding Protein F2. Journal of Biological Chemistry, 2004, 279, 15850-15859.	1.6	76
8	Mode of Expression and Functional Characterization of FCT-3 Pilus Region-Encoded Proteins in <i>Streptococcus pyogenes</i> Serotype M49. Infection and Immunity, 2009, 77, 32-44.	1.0	76
9	Streptolysin S Contributes to Group A Streptococcal Translocation across an Epithelial Barrier. Journal of Biological Chemistry, 2011, 286, 2750-2761.	1.6	75
10	Cell Wall-Anchored Nuclease of Streptococcus sanguinis Contributes to Escape from Neutrophil Extracellular Trap-Mediated Bacteriocidal Activity. PLoS ONE, 2014, 9, e103125.	1.1	61
11	Cysteine Proteinase from Streptococcus pyogenes Enables Evasion of Innate Immunity via Degradation of Complement Factors. Journal of Biological Chemistry, 2013, 288, 15854-15864.	1.6	59
12	The <i>Streptococcus pyogenes</i> Serotype M49 Nra-Ralp3 Transcriptional Regulatory Network and Its Control of Virulence Factor Expression from the Novel <i>eno ralp3 epf sagA</i> Pathogenicity Region. Infection and Immunity, 2007, 75, 5698-5710.	1.0	52
13	Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness. Cellular Microbiology, 2005, 7, 1237-1250.	1.1	51
14	MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Molecular Microbiology, 2005, 57, 786-803.	1.2	50
15	Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microbial Pathogenesis, 2011, 50, 148-154.	1.3	50
16	Regulated expression of the Shiga toxin B gene induces apoptosis in mammalian fibroblastic cells. Molecular Microbiology, 2002, 33, 1190-1199.	1.2	47
17	Transcriptome analysis and gene expression profiles of early apoptosis-related genes in Streptococcus pyogenes-infected epithelial cells. Cellular Microbiology, 2004, 6, 939-952.	1.1	46
18	Group A Streptococcal Cysteine Protease Cleaves Epithelial Junctions and Contributes to Bacterial Translocation. Journal of Biological Chemistry, 2013, 288, 13317-13324.	1.6	46

Masanobu Nakata

#	Article	IF	CITATIONS
19	Involvement of T6 Pili in Biofilm Formation by Serotype M6 Streptococcus pyogenes. Journal of Bacteriology, 2012, 194, 804-812.	1.0	45
20	Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death. PLoS ONE, 2013, 8, e62563.	1.1	44
21	Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochemical and Biophysical Research Communications, 2010, 391, 1192-1196.	1.0	42
22	Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions. Scientific Reports, 2016, 6, 20069.	1.6	40
23	Allergic conversion of protective mucosal immunity against nasal bacteria in patients with chronic rhinosinusitis with nasal polyposis. Journal of Allergy and Clinical Immunology, 2019, 143, 1163-1175.e15.	1.5	39
24	Streptococcus gallolyticus subsp. gallolyticus endocarditis isolate interferes with coagulation and activates the contact system. Virulence, 2018, 9, 248-261.	1.8	36
25	Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci. PLoS ONE, 2014, 9, e88136.	1.1	35
26	Evolutionary inactivation of a sialidase in group B Streptococcus. Scientific Reports, 2016, 6, 28852.	1.6	31
27	Assembly Mechanism of FCT Region Type 1 Pili in Serotype M6 Streptococcus pyogenes. Journal of Biological Chemistry, 2011, 286, 37566-37577.	1.6	30
28	Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide. PLoS ONE, 2017, 12, e0172223.	1.1	30
29	Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q. Journal of Biological Chemistry, 2017, 292, 4244-4254.	1.6	29
30	Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae. Communications Biology, 2019, 2, 96.	2.0	26
31	PlyC, a novel bacteriophage lysin for compartment―dependent proteomics of group A streptococci. Proteomics, 2008, 8, 140-148.	1.3	25
32	Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species. FEMS Microbiology Letters, 2011, 323, 164-170.	0.7	24
33	Zinc metalloproteinase ZmpC suppresses experimental pneumococcal meningitis by inhibiting bacterial invasion of central nervous systems. Virulence, 2017, 8, 1516-1524.	1.8	24
34	Streptococcus pyogenes Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. Applied and Environmental Microbiology, 2019, 85, .	1.4	24
35	Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the skin surface. Cell Reports, 2021, 34, 108924.	2.9	24
36	Streptococcus pneumoniae Evades Host Cell Phagocytosis and Limits Host Mortality Through Its Cell Wall Anchoring Protein PfbA. Frontiers in Cellular and Infection Microbiology, 2019, 9, 301.	1.8	22

Masanobu Nakata

#	Article	IF	CITATIONS
37	Comprehensive analysis of bacteriocins in Streptococcus mutans. Scientific Reports, 2021, 11, 12963.	1.6	21
38	Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 10.	1.8	20
39	Genetics, Structure, and Function of Group A Streptococcal Pili. Frontiers in Microbiology, 2021, 12, 616508.	1.5	20
40	<i>Streptococcus pyogenes</i> serotype-dependent and independent changes in infected HEp-2 epithelial cells. ISME Journal, 2007, 1, 678-692.	4.4	19
41	M-protein and other intrinsic virulence factors of Streptococcus pyogenes are encoded on an ancient pathogenicity island. BMC Genomics, 2009, 10, 198.	1.2	19
42	Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide. Infection and Immunity, 2016, 84, 2042-2050.	1.0	18
43	S-Carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells. Journal of Medical Microbiology, 2012, 61, 101-108.	0.7	16
44	Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain tissue and virulence in meningitis. Virulence, 2018, 9, 1576-1587.	1.8	16
45	GP96 Drives Exacerbation of Secondary Bacterial Pneumonia following Influenza A Virus Infection. MBio, 2021, 12, e0326920.	1.8	15
46	Streptococcus sanguinis Noncoding <i>cia</i> -Dependent Small RNAs Negatively Regulate Expression of Type IV Pilus Retraction ATPase PilT and Biofilm Formation. Infection and Immunity, 2018, 86, .	1.0	13
47	Secondary streptococcal infection following influenza. Microbiology and Immunology, 2022, 66, 253-263.	0.7	11
48	Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death. PLoS ONE, 2020, 15, e0231101.	1.1	8
49	Thermosensitive pilus production by FCT type 3 <i>Streptococcus pyogenes</i> controlled by Nra regulator translational efficiency. Molecular Microbiology, 2020, 113, 173-189.	1.2	7
50	Complete sequences of epidermin and nukacin encoding plasmids from oral-derived Staphylococcus epidermidis and their antibacterial activity. PLoS ONE, 2022, 17, e0258283.	1.1	6
51	Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Frontiers in Microbiology, 2020, 11, 582437.	1.5	5
52	Expression of virulence factors under different environmental conditions in <i>Aggregatibacter actinomycetemcomitans</i> . Microbiology and Immunology, 2021, 65, 101-114.	0.7	3
53	Detection of Fibronectin-Binding Proteins of Streptococcus pyogenes Using Ligand Blot Analysis. Methods in Molecular Biology, 2020, 2136, 181-190.	0.4	2
54	Infection and pathogenesis of a murine strain of Escherichia coli with genetically introduced Shiga toxin type I operon in conventional mice. Microbial Pathogenesis, 2002, 33, 63-72.	1.3	1

#	Article	IF	CITATIONS
55	Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
56	Small regulatory RNAs of oral streptococci and periodontal bacteria. Japanese Dental Science Review, 2021, 57, 209-216.	2.0	0