
Jeung Gon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7987694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading to Robust C–H Amination with a New Type of Amidating Reagent. Journal of the American Chemical Society, 2015, 137, 4534-4542.	6.6	371
2	From Aryl Bromides to Enantioenriched Benzylic Alcohols in a Single Flask: Catalytic Asymmetric Arylation of Aldehydes. Angewandte Chemie - International Edition, 2006, 45, 4175-4178.	7.2	133
3	Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed Direct C–H Amidation with 1,4,2-Dioxazol-5-ones. Organic Process Research and Development, 2015, 19, 1024-1029.	1.3	123
4	Catalytic Asymmetric Allylation of Ketones and a Tandem Asymmetric Allylation/Diastereoselective Epoxidation of Cyclic Enones. Journal of the American Chemical Society, 2004, 126, 12580-12585.	6.6	115
5	The mechanochemical synthesis of polymers. Chemical Society Reviews, 2022, 51, 2873-2905.	18.7	108
6	Tailored Living Block Copolymerization: Multiblock Poly(cyclohexene carbonate)s with Sequence Control. Macromolecules, 2011, 44, 1110-1113.	2.2	105
7	Practical Catalytic Asymmetric Synthesis of Diaryl-, Aryl Heteroaryl-, and Diheteroarylmethanols. Journal of the American Chemical Society, 2009, 131, 12483-12493.	6.6	103
8	Chemical recycling of poly(bisphenol A carbonate). Polymer Chemistry, 2020, 11, 4830-4849.	1.9	101
9	Chemical recycling of poly(bisphenol A carbonate): 1,5,7-Triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer, 2018, 143, 106-114.	1.8	86
10	Dynamic Kinetic Resolution of Atropisomeric Amides. Organic Letters, 2004, 6, 2051-2053.	2.4	83
11	Synthesis of Phosphoramidates: A Facile Approach Based on the C–N Bond Formation via Ir-Catalyzed Direct C–H Amidation. Organic Letters, 2014, 16, 5466-5469.	2.4	74
12	Highly Concentrated Catalytic Asymmetric Allylation of Ketones. Organic Letters, 2007, 9, 381-384.	2.4	61
13	Mechanochemical Ringâ€Opening Polymerization of Lactide: Liquidâ€Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight. ChemSusChem, 2017, 10, 3529-3533.	3.6	60
14	Synthesis and Polymerization of Norbornenyl-Terminated Multiblock Poly(cyclohexene carbonate)s: A Consecutive Ring-Opening Polymerization Route to Multisegmented Graft Polycarbonates. Macromolecules, 2012, 45, 7878-7883.	2.2	51
15	Metalâ€Free Hydrosilylation Polymerization by Borane Catalyst. Angewandte Chemie - International Edition, 2015, 54, 14805-14809.	7.2	50
16	Tertiary amines: A new class of highly efficient organocatalysts for CO2 fixations. Journal of Industrial and Engineering Chemistry, 2016, 44, 210-215.	2.9	48
17	Catalytic Asymmetric Methallylation of Ketones with an (H8-BINOLate)Ti-Based Catalyst. Organic Letters, 2006, 8, 4413-4416.	2.4	41
18	Mechanochemical Post-Polymerization Modification: Solvent-Free Solid-State Synthesis of Functional Polymers. ACS Macro Letters, 2018, 7, 561-565.	2.3	35

JEUNG GON KIM

#	Article	IF	CITATIONS
19	Diphenyl Carbonate: A Highly Reactive and Green Carbonyl Source for the Synthesis of Cyclic Carbonates. Journal of Organic Chemistry, 2018, 83, 11768-11776.	1.7	32
20	Mechanochemical Iridium(III)-Catalyzed B-Amidation of <i>o</i> -Carboranes with Dioxazolones. Organic Letters, 2021, 23, 8622-8627.	2.4	30
21	Mechanochemical synthesis of poly(lactic acid) block copolymers: overcoming the miscibility of the macroinitiator, monomer and catalyst under solvent-free conditions. Polymer Chemistry, 2019, 10, 539-545.	1.9	28
22	Self-Assembly of Monolayer Vesicles via Backbone-Shiftable Synthesis of Janus Core–Shell Bottlebrush Polymer. Macromolecules, 2019, 52, 9484-9494.	2.2	27
23	Palladium-catalyzed carbonylation of thioacetates and aryl iodides for the synthesis of <i>S</i> -aryl thioesters. Organic Chemistry Frontiers, 2018, 5, 2447-2452.	2.3	25
24	Molecular Weight Dependent Morphological Transitions of Bottlebrush Block Copolymer Particles: Experiments and Simulations. ACS Nano, 2021, 15, 5513-5522.	7.3	24
25	Synthesis and luminescence behaviors of aluminum complex with mixed ligands. Synthetic Metals, 2001, 121, 1669-1670.	2.1	22
26	Mechanochemical synthesis of poly(trimethylene carbonate)s: an example of rate acceleration. Beilstein Journal of Organic Chemistry, 2019, 15, 963-970.	1.3	22
27	Direct transesterification of poly(methyl acrylate) for functional polyacrylate syntheses. Journal of Polymer Science Part A, 2017, 55, 2554-2560.	2.5	18
28	Synthesis of Polypropylene via Catalytic Deoxygenation of Poly(methyl acrylate). ACS Macro Letters, 2019, 8, 1172-1178.	2.3	17
29	Synthesis of colorless and highly refractive Poly(phenylene thioether ether) derived from 2,7-(4,4′-diphenol)thiothianthrene. Polymer, 2019, 165, 191-197.	1.8	15
30	Mechanochemical Regulation of Unstable Acyl Azide: Ir(III)-Catalyzed Nitrene Transfer C–H Amidation under Solvent-Free Ball Milling Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8679-8685.	3.2	14
31	Influence of residual impurities on ringâ€opening metathesis polymerization after copper(I)â€catalyzed alkyneâ€azide cycloaddition click reaction. Journal of Polymer Science Part A, 2019, 57, 726-737.	2.5	13
32	Tin(IV)-Porphyrin Tetracarbonyl Cobaltate: An Efficient Catalyst for the Carbonylation of Epoxides. Catalysts, 2019, 9, 311.	1.6	11
33	Chemical Upcycling of Waste Poly(bisphenol A carbonate) to 1,4,2â€Đioxazolâ€5â€ones and Oneâ€Pot Câ^'H Amidation. ChemSusChem, 2021, 14, 4301-4306.	3.6	10
34	Solventâ€Free Mechanochemical Postâ€Polymerization Modification of Ionic Polymers. ChemSusChem, 2021, 14, 3801-3805.	3.6	7
35	Study of Green Solvents for Ruthenium Alkylidene Mediated Ringâ€Opening Metathesis Polymerization. Bulletin of the Korean Chemical Society, 2021, 42, 502-505.	1.0	6
36	Calix[<i>n</i>]triazolium based turn-on fluorescent sensing ensemble for selective adenosine monophosphate (AMP) detection. Chemical Communications, 2021, 57, 12139-12142.	2.2	6

#	Article	IF	CITATIONS
37	Synthesis of wellâ€defined norbornenylâ€terminated poly(alkyl methacrylate)s by group transfer polymerization and their graftingâ€through ringâ€opening metathesis polymerization. Journal of Polymer Science, 2020, 58, 1450-1455.	2.0	5
38	Organocatalyzed Synthesis and Degradation of Functionalized Poly(4-allyloxymethyl-β-propiolactone)s. Macromolecules, 2021, 54, 10903-10913.	2.2	5
39	Synthesis and Self-Assembly of Poly(vinylpyridine)-Containing Brush Block Copolymers: Combined Synthesis of Grafting-Through and Grafting-to Approaches. Macromolecules, 2022, 55, 1590-1599.	2.2	4
40	Studies on Poly αâ€Olefin Synthesis by AlCl ₃ â€catalyzed Cationic Polymerization: Concentration Effect on Molecular Weight and Viscosity. Bulletin of the Korean Chemical Society, 2019, 40, 289-292.	1.0	3
41	Divergent strategy for the synthesis of bottlebrush polymers via postpolymerization modification of macromonomer. Journal of Polymer Science, 2020, 58, 3237-3244.	2.0	1
42	Sequential Postâ€Polymerization Modification of Aldehyde Polymers to Ketone and Oxime Polymers. Macromolecular Rapid Communications, 2021, 42, 2100478.	2.0	1