List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7987565/publications.pdf Version: 2024-02-01

HONGRING

#	Article	IF	CITATIONS
1	Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & Interfaces, 2014, 6, 22920-22927.	8.0	370
2	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	14.2	339
3	An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC - Trends in Analytical Chemistry, 2019, 116, 102-108.	11.4	315
4	Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10, 3687.	12.8	300
5	Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Applied Catalysis B: Environmental, 2016, 185, 68-76.	20.2	290
6	2D/2D heterojunction of Ti ₃ C ₂ /g-C ₃ N ₄ nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale, 2019, 11, 8138-8149.	5.6	289
7	A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10, 3663.	12.8	270
8	Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Applied Catalysis B: Environmental, 2016, 181, 779-787.	20.2	268
9	Monodentate hydroxide as a super strong yet reversible active site for CO ₂ capture from high-humidity flue gas. Energy and Environmental Science, 2015, 8, 1011-1016.	30.8	233
10	Photoelectrochemical hydrogen production from biomass derivatives and water. Chemical Society Reviews, 2014, 43, 7581-7593.	38.1	216
11	Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chemical Engineering Journal, 2022, 428, 131027.	12.7	204
12	A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy and Environmental Science, 2016, 9, 3411-3416.	30.8	197
13	Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO ₂ capture at low pressures. Chemical Science, 2016, 7, 6528-6533.	7.4	197
14	An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2019, 259, 118085.	20.2	177
15	Monolayer Ti ₃ C ₂ <i>T</i> _{<i>x</i>} as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO ₂ . ACS Applied Energy Materials, 2019, 2, 4640-4651.	5.1	177
16	Costâ€Effective Alkaline Water Electrolysis Based on Nitrogen―and Phosphorusâ€Đoped Selfâ€Supportive Electrocatalysts. Advanced Materials, 2017, 29, 1702095.	21.0	175
17	Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content. Applied Catalysis B: Environmental, 2017, 200, 543-551.	20.2	159
18	Mechanochemical Kilogram-Scale Synthesis of Noble Metal Single-Atom Catalysts. Cell Reports Physical Science, 2020, 1, 100004.	5.6	139

#	Article	IF	CITATIONS
19	Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by salen aluminum complexes with built-in "CO ₂ capture―capability under mild conditions. Green Chemistry, 2014, 16, 1496-1506.	9.0	125
20	Charged Metalloporphyrin Polymers for Cooperative Synthesis of Cyclic Carbonates from CO ₂ under Ambient Conditions. ChemSusChem, 2017, 10, 2534-2541.	6.8	122
21	Sulfur Vacancy and Ti ₃ C ₂ T <i>_x</i> Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti ₃ C ₂ T <i>_x</i> /ZnIn ₂ S ₄ Heterostructure for Enhanced Photocatalytic Hydrogen Evolution. Advanced Science. 2022. 9. e2103715.	11.2	120
22	All solid-state Z‑scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution. Applied Catalysis B: Environmental, 2020, 277, 119235.	20.2	119
23	Metalloporphyrin Polymers with Intercalated Ionic Liquids for Synergistic CO ₂ Fixation via Cyclic Carbonate Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 1074-1082.	6.7	115
24	Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. Journal of Catalysis, 2016, 338, 192-201.	6.2	113
25	Core–Shell NiO@PdO Nanoparticles Supported on Alumina as an Advanced Catalyst for Methane Oxidation. ACS Catalysis, 2017, 7, 1615-1625.	11.2	113
26	Stateâ€ofâ€theâ€Art Aluminum Porphyrinâ€based Heterogeneous Catalysts for the Chemical Fixation of CO ₂ into Cyclic Carbonates at Ambient Conditions. ChemCatChem, 2017, 9, 767-773.	3.7	111
27	Efficient Selective Removal of Pb(II) by Using 6-Aminothiouracil-Modified Zr-Based Organic Frameworks: From Experiments to Mechanisms. ACS Applied Materials & Interfaces, 2020, 12, 7162-7178.	8.0	99
28	Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants. Chemical Engineering Journal, 2020, 391, 123607.	12.7	97
29	Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction. Chinese Journal of Catalysis, 2019, 40, 796-818.	14.0	96
30	Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chemical Engineering Journal, 2014, 243, 254-264.	12.7	93
31	Defect Engineering of Bismuth Oxyiodide by IO ₃ [–] Doping for Increasing Charge Transport in Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 27859-27867.	8.0	93
32	Function-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversion. Journal of Materials Chemistry A, 2018, 6, 9172-9182.	10.3	91
33	Carbon Dots Sensitized BiOI with Dominant {001} Facets for Superior Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2015, 54, 12788-12794.	3.7	89
34	Facile Synthesis of Kilogram-Scale Co-Alloyed Pt Single-Atom Catalysts via Ball Milling for Hydrodeoxygenation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 8692-8699.	6.7	89
35	New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO ₂ under mild conditions. Green Chemistry, 2014, 16, 4179-4189.	9.0	88
36	A phenyl-rich β-cyclodextrin porous crosslinked polymer for efficient removal of aromatic pollutants: Insight into adsorption performance and mechanism. Chemical Engineering Journal, 2020, 387, 124020.	12.7	88

#	Article	IF	CITATIONS
37	A highly durable catalyst based on Co x Mn3–x O4 nanosheets for low-temperature formaldehyde oxidation. Nano Research, 2016, 9, 3881-3892.	10.4	87
38	Strong Metal-Support Interaction in Pt/TiO ₂ Induced by Mild HCHO and NaBH ₄ Solution Reduction and Its Effect on Catalytic Toluene Combustion. Industrial & Engineering Chemistry Research, 2014, 53, 15879-15888.	3.7	86
39	Perovskite-based photocatalysts for organic contaminants removal: Current status and future perspectives. Catalysis Today, 2019, 327, 47-63.	4.4	86
40	MnO ₂ Promoted TiO ₂ Nanotube Array Supported Pt Catalyst for Formaldehyde Oxidation with Enhanced Efficiency. Industrial & Engineering Chemistry Research, 2015, 54, 8900-8907.	3.7	84
41	CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chemical Engineering Science, 2016, 153, 10-20.	3.8	84
42	Synthesis of Dimethyl Ether from CO ₂ and H ₂ Using a Cu–Fe–Zr/HZSM-5 Catalyst System. Industrial & Engineering Chemistry Research, 2013, 52, 16648-16655.	3.7	82
43	Enhancing the Photocatalytic Performance of BiOCl <i>_x</i> l _{1â^'<i>x</i>} by Introducing Surface Disorders and Bi Nanoparticles as Cocatalyst. Advanced Materials Interfaces, 2015, 2, 1500249.	3.7	82
44	Alkali-modified non-precious metal 3D-NiCo ₂ O ₄ nanosheets for efficient formaldehyde oxidation at low temperature. Journal of Materials Chemistry A, 2016, 4, 3648-3654.	10.3	81
45	Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chemical Engineering Journal, 2020, 389, 124490.	12.7	78
46	Insight into the enhanced performance of TiO 2 nanotube supported Pt catalyst for toluene oxidation. Catalysis Today, 2017, 297, 159-166.	4.4	77
47	Metallosalenâ€Based Ionic Porous Polymers as Bifunctional Catalysts for the Conversion of CO ₂ into Valuable Chemicals. ChemSusChem, 2017, 10, 1526-1533.	6.8	77
48	Metal- and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: A kinetic study. Carbon, 2015, 82, 1-11.	10.3	75
49	Preparation and characterization of Cu modified BiYO3 for carbon dioxide reduction to formic acid. Applied Catalysis B: Environmental, 2017, 202, 364-373.	20.2	74
50	Tailored covalent organic frameworks for simultaneously capturing and converting CO ₂ into cyclic carbonates. Journal of Materials Chemistry A, 2021, 9, 20941-20956.	10.3	73
51	Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co-S bond as a bridge for electron transfer. Applied Surface Science, 2021, 567, 150849.	6.1	73
52	Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6364-6368.	2.2	72
53	Photocatalytic Properties and Mechanistic Insights into Visible Lightâ€Promoted Aerobic Oxidation of Sulfides to Sulfoxides via Tin Porphyrinâ€Based Porous Aromatic Frameworks. Advanced Synthesis and Catalysis, 2018, 360, 4402-4411.	4.3	67
54	Cooperative Catalytic Activation of Siâ^'H Bonds: CO ₂ â€Based Synthesis of Formamides from Amines and Hydrosilanes under Mild Conditions. ChemSusChem, 2017, 10, 1224-1232.	6.8	66

#	Article	IF	CITATIONS
55	An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology, 2019, 30, 502002.	2.6	66
56	In situ DRIFTS study of O 3 adsorption on CaO, γ-Al 2 O 3 , CuO, α-Fe 2 O 3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde. Applied Surface Science, 2017, 412, 290-305.	6.1	65
57	The enhancement of photocatalytic CO ₂ reduction by the <i>in situ</i> growth of TiO ₂ on Ti ₃ C ₂ MXene. Catalysis Science and Technology, 2021, 11, 1602-1614.	4.1	65
58	Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chemical Engineering Journal, 2010, 156, 411-417.	12.7	63
59	Fabrication of GNS/MoS2 composite with different morphology and its tribological performance as a lubricant additive. Applied Surface Science, 2019, 469, 226-235.	6.1	63
60	Fast adsorption of p -nitrophenol from aqueous solution using β -cyclodextrin grafted silica gel. Applied Surface Science, 2015, 356, 1155-1167.	6.1	60
61	Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO ₂ into five-membered heterocyclic molecules. Sustainable Energy and Fuels, 2018, 2, 125-132.	4.9	59
62	Preparation and controllable release of chitosan/vanillin microcapsules and their application to cotton fabric. Flavour and Fragrance Journal, 2014, 29, 114-120.	2.6	58
63	Monolith-Like TiO ₂ Nanotube Array Supported Pt Catalyst for HCHO Removal under Mild Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 7629-7636.	3.7	58
64	CO2 reforming of CH4 to syngas over nickel-based catalysts. Environmental Chemistry Letters, 2020, 18, 997-1017.	16.2	57
65	NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorganic Chemistry, 2021, 60, 17371-17378.	4.0	56
66	Aerobic oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild conditions. Catalysis Communications, 2009, 10, 828-832.	3.3	55
67	Recent advances in the photocatalytic reduction of carbon dioxide. Environmental Chemistry Letters, 2016, 14, 99-112.	16.2	54
68	Modifying defect States in CeO2 by Fe doping: A strategy for low-temperature catalytic oxidation of toluene with sunlight. Journal of Hazardous Materials, 2020, 390, 122182.	12.4	54
69	Carbon Nitride Polymer Sensitization and Nitrogen Doping of SrTiO ₃ /TiO ₂ Nanotube Heterostructure toward High Visible Light Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2017, 56, 9999-10008.	3.7	53
70	Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature. Catalysis Today, 2015, 258, 56-63.	4.4	52
71	Improved interface compatibility of hollow H-Zr0.1Ti0.9O2 with UiO-66-NH2 via Zr-Ti bidirectional penetration to boost visible photocatalytic activity for acetaldehyde degradation under high humidity. Applied Catalysis B: Environmental, 2021, 296, 120371.	20.2	51
72	Hybridization of CuO with Bi ₂ MoO ₆ Nanosheets as a Surface Multifunctional Photocatalyst for Toluene Oxidation under Solar Irradiation. ACS Applied Materials & Interfaces, 2020, 12, 2259-2268.	8.0	50

#	Article	IF	CITATIONS
73	2-Hydroxypropyl-β-cyclodextrin Polymer as a Mimetic Enzyme for Mediated Synthesis of Benzaldehyde in Water. ACS Sustainable Chemistry and Engineering, 2013, 1, 1172-1179.	6.7	49
74	Density functional theory study on the interaction of CO2 with Fe3O4(111) surface. Applied Surface Science, 2016, 378, 270-276.	6.1	49
75	Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts. Catalysis Communications, 2016, 75, 78-82.	3.3	49
76	Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 285, 119863.	20.2	49
77	Homeostasis in Cu _x O/SrTiO ₃ hybrid allows highly active and stable visible light photocatalytic performance. Chemical Communications, 2017, 53, 12329-12332.	4.1	48
78	DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catalysis Today, 2020, 347, 124-133.	4.4	47
79	Polyethyleneimine-modified magnetic starch microspheres for Cd(II) adsorption in aqueous solutions. Advanced Composites and Hybrid Materials, 2022, 5, 2772-2786.	21.1	45
80	Advances towards the utilization of Vis-NIR light energy by coating YF ₃ :Yb ³⁺ ,Er ³⁺ over ZnS microspheres triggering hydrogen production and pollutants disposal. Journal of Materials Chemistry C, 2019, 7, 8053-8062.	5.5	44
81	Photothermocatalytic synergistic oxidation: An effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation. Chemical Engineering Journal, 2020, 397, 125485.	12.7	44
82	Baeyer-Villiger oxidation of ketones catalyzed by iron(III) <i>meso</i> -tetraphenylporphyrin chloride in the presence of molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2008, 12, 94-100.	0.8	43
83	Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chinese Journal of Catalysis, 2021, 42, 1078-1095.	14.0	43
84	Electrospun CoSe@NC nanofiber membrane as an effective polysulfides adsorption-catalysis interlayer for Li-S batteries. Chemical Engineering Journal, 2022, 430, 131911.	12.7	43
85	TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production. Journal of Alloys and Compounds, 2020, 836, 155428.	5.5	42
86	Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation. Chinese Journal of Chemical Engineering, 2018, 26, 2361-2367.	3.5	41
87	Z-scheme Ag ₃ PO ₄ /Ag/SrTiO ₃ Heterojunction for Visible-Light Induced Photothermal Synergistic VOCs Degradation with Enhanced Performance. Industrial & Engineering Chemistry Research, 2019, 58, 13950-13959.	3.7	41
88	Covalent Triazine Frameworks Obtained from Nitrile Monomers for Sustainable CO ₂ Catalysis. ChemSusChem, 2020, 13, 6509-6522.	6.8	41
89	Sequential growth reveals multi-spinel interface promotion for methane combustion over alumina supported palladium catalyst. Applied Catalysis B: Environmental, 2020, 273, 119071.	20.2	41
90	Regulate the crystal and optoelectronic properties of Bi2WO6 nanosheet crystals by Sm3+ doping for superior visible-light-driven photocatalytic performance. Applied Surface Science, 2020, 508, 145309.	6.1	41

#	Article	IF	CITATIONS
91	Surface engineering of MXenes for energy and environmental applications. Journal of Materials Chemistry A, 2022, 10, 10265-10296.	10.3	41
92	Side chain influencing the interaction between <i>β</i> yclodextrin and vanillin. Flavour and Fragrance Journal, 2012, 27, 378-385.	2.6	40
93	Solvent-free selective oxidation of primary and secondary alcohols catalyzed by ruthenium-bis(benzimidazole)pyridinedicarboxylate complex using hydrogen peroxide as an oxidant. Tetrahedron Letters, 2013, 54, 3882-3885.	1.4	40
94	Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO ₂ over Cu–Fe–Zr/HZSMâ€5. AICHE Journal, 2015, 61, 1613-1627.	3.6	40
95	Thiourea modified hyperâ€crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions. Journal of Applied Polymer Science, 2018, 135, 45568.	2.6	40
96	The distinct role of boron doping in Sn ₃ O ₄ microspheres for synergistic removal of phenols and Cr(<scp>vi</scp>) in simulated wastewater. Environmental Science: Nano, 2020, 7, 286-303.	4.3	40
97	Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Atomically Dispersed Ruthenium Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 4333-4337.	3.7	40
98	β-Cyclodextrin functionalized SBA-15 via amide linkage as a super adsorbent for rapid removal of methyl blue. Journal of Colloid and Interface Science, 2021, 583, 100-112.	9.4	40
99	Bioinspired Dynamically Switchable PANI/PSâ€ <i>b</i> â€P2VP Thin Films for Multicolored Electrochromic Displays with Longâ€Term Durability. Advanced Functional Materials, 2021, 31, 2106577.	14.9	40
100	Ultrathin 2D/2D Ti ₃ C ₂ T _{<i>x</i>} /semiconductor dual-functional photocatalysts for simultaneous imine production and H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 19984-19993.	10.3	40
101	Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO ₄ Photoanode for Solar-Assisted Water Electrolysis. Journal of Physical Chemistry C, 2017, 121, 17150-17159.	3.1	39
102	Titania-supported Pt catalyst reduced with HCHO for HCHO oxidation under mild conditions. Chinese Journal of Catalysis, 2015, 36, 188-196.	14.0	38
103	Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO 2 (101) and formaldehyde: A density functional theory study. Catalysis Today, 2017, 297, 151-158.	4.4	38
104	A g-C ₃ N ₄ /WO ₃ photoanode with exceptional ability for photoelectrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 338-342.	5.9	38
105	Tribological Study of the SOCNTs@MoS ₂ Composite as a Lubricant Additive: Synergistic Effect. Industrial & Engineering Chemistry Research, 2018, 57, 6878-6887.	3.7	38
106	Constructing a CeO _{2â^'x} @CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorganic Chemistry Frontiers, 2020, 7, 4461-4468.	6.0	38
107	Enhanced selective removal of Pb(II) by modification low-cost bio-sorbent: Experiment and theoretical calculations. Journal of Cleaner Production, 2021, 316, 128372.	9.3	38
108	Enhanced formaldehyde oxidation performance over Pt/ZSM-5 through a facile nickel cation modification. Applied Surface Science, 2018, 457, 670-675.	6.1	37

#	Article	IF	CITATIONS
109	A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. Journal of Materials Chemistry A, 2020, 8, 2364-2368.	10.3	37
110	CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support. Chemical Engineering Science, 2019, 210, 115245.	3.8	36
111	Solid inclusion complex of terpinenâ€4â€ol/ <i>β</i> â€cyclodextrin: kinetic release, mechanism and its antibacterial activity. Flavour and Fragrance Journal, 2015, 30, 179-187.	2.6	34
112	Biosorption and selective separation of acetophenone and 1-phenylethanol with polysaccharide-based polymers. Chemical Engineering Journal, 2017, 317, 862-872.	12.7	34
113	Enhanced Photocatalytic Mineralization of Gaseous Toluene over SrTiO ₃ by Surface Hydroxylation. Industrial & Engineering Chemistry Research, 2016, 55, 11923-11930.	3.7	33
114	Efficient Removal of Copper Ion from Wastewater Using a Stable Chitosan Gel Material. Molecules, 2019, 24, 4205.	3.8	33
115	Soft template inducted hydrothermal BiYO ₃ catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. RSC Advances, 2016, 6, 52665-52673.	3.6	32
116	Selective inclusion and separation of cinnamaldehyde and benzaldehyde by insoluble β-cyclodextrin polymer. Separation and Purification Technology, 2011, 80, 209-216.	7.9	31
117	Three-dimensional TiO ₂ /CeO ₂ nanowire composite for efficient formaldehyde oxidation at low temperature. RSC Advances, 2015, 5, 7729-7733.	3.6	31
118	Highly Efficient, Mild, Bromide-Free and Acetic Acid-Free Dioxygen Oxidation ofp-Nitrotoluene top-Nitrobenzoic Acid with Metal Phthalocyanine Catalysts. Organic Process Research and Development, 2005, 9, 297-301.	2.7	30
119	Efficient remediation of 2,4-dichlorophenol from aqueous solution using β-cyclodextrin-based submicron polymeric particles. Chemical Engineering Journal, 2019, 360, 531-541.	12.7	30
120	Mechanism into selective oxidation of cinnamaldehyde using β-cyclodextrin polymer as phase-transfer catalyst. Tetrahedron, 2012, 68, 5912-5919.	1.9	29
121	Recyclable bifunctional aluminum salen catalyst for CO2 fixation: the efficient formation of five-membered heterocyclic compounds. Science China Chemistry, 2017, 60, 979-989.	8.2	29
122	A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (XÂ=ÂCl, Br) nanosheets. Applied Surface Science, 2020, 515, 145967.	6.1	29
123	Green oxidation of alcohols by a reusable nickel catalyst in the presence of molecular oxygen. Reaction Kinetics and Catalysis Letters, 2007, 90, 251-257.	0.6	28
124	Efficient removal of BTEX from aqueous solution by β-cyclodextrin modified poly(butyl methacrylate) resin. Separation and Purification Technology, 2016, 158, 417-421.	7.9	28
125	Rapid and selective recovery of acetophenone from petrochemical effluents by crosslinked starch polymer. Journal of Hazardous Materials, 2018, 348, 20-28.	12.4	28
126	Controllable Synthesis, Core-Shell Nanostructures, and Supercapacitor Performance of Highly Uniform Polypyrrole/Polyaniline Nanospheres. ACS Applied Energy Materials, 2021, 4, 3701-3711.	5.1	28

#	Article	IF	CITATIONS
127	Tribological Performance of an Imidazolium Ionic Liquid-Functionalized SiO ₂ @Graphene Oxide as an Additive. ACS Applied Materials & Interfaces, 2021, 13, 50573-50583.	8.0	28
128	Direct aerobic liquid phase epoxidation of propylene catalyzed by Mn(<scp>iii</scp>) porphyrin under mild conditions: evidence for the existence of both peroxide and Mn(<scp>iv</scp>)-oxo species from in situ characterizations. RSC Advances, 2015, 5, 30014-30020.	3.6	27
129	Influence of Zr, Ce, and La on Co 3 O 4 catalyst for CO 2 methanation at low temperature. Chinese Journal of Chemical Engineering, 2018, 26, 768-774.	3.5	27
130	Mn Modified Ni/Bsentonite for CO2 Methanation. Catalysts, 2018, 8, 646.	3.5	27
131	Single Cu atom dispersed on S,N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Research, 2022, 15, 5995-6000.	10.4	27
132	Synchronous pore structure and surface hydroxyl groups amelioration as an efficient route for promoting HCHO oxidation over Pt/ZSM-5. Catalysis Today, 2018, 316, 107-113.	4.4	26
133	Construction of efficient solar-light-driven quaternary Ag3VO4/Zn3(VO4)2/Zn2V2O7/ ZnO heterostructures for removing organic pollutants via phase transformation and in-situ precipitation route. Applied Catalysis A: General, 2019, 578, 70-82.	4.3	26
134	Click-Based Porous Ionic Polymers with Intercalated High-Density Metalloporphyrin for Sustainable CO ₂ Transformation. Industrial & Engineering Chemistry Research, 2020, 59, 20269-20277.	3.7	26
135	Sustainable synthesis of multifunctional porous metalloporphyrin polymers for efficient carbon dioxide transformation under mild conditions. Chemical Engineering Science, 2021, 232, 116380.	3.8	26
136	Low-Temperature Photothermal Catalytic Oxidation of Toluene on a Core/Shell SiO ₂ @Pt@ZrO ₂ Nanostructure. Industrial & Engineering Chemistry Research, 2019, 58, 16450-16458.	3.7	25
137	Broadband photocatalysis using a Z-scheme heterojunction of Au/NaYF ₄ :Yb,Er/WO ₃ Â0.33H ₂ O-W ₁₈ O ₄₉ <i>via a synergetic strategy of upconversion function and plasmonic effect. Inorganic Chemistry Frontiers, 2019. 6. 3158-3167.</i>	a6.0	25
138	Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Science China Chemistry, 2020, 63, 810-817.	8.2	25
139	Highly dispersed and active Pd nanoparticles over titania support through engineering oxygen vacancies and their anchoring effect. AICHE Journal, 2020, 66, e16288.	3.6	25
140	Removal of various pollutants from wastewaters using an efficient and degradable hypercrosslinked polymer. Separation Science and Technology, 2021, 56, 860-869.	2.5	25
141	TiO2 nanotube arrays sensitized by copper (II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. Journal of Hazardous Materials, 2022, 422, 126869.	12.4	25
142	Oxidation of benzyl alcohol aiming at a greener reaction. Reaction Kinetics and Catalysis Letters, 2003, 78, 73-80.	0.6	24
143	Facile synthesis of a robust visible-light-driven AgCl/WO3 composite microrod photocatalyst. Journal of Alloys and Compounds, 2019, 809, 151844.	5.5	24
144	A Carbazolyl Porphyrinâ€Based Conjugated Microporous Polymer for Metalâ€Free Photocatalytic Aerobic Oxidation Reactions. ChemCatChem, 2020, 12, 3523-3529.	3.7	24

#	ARTICLE	IF	CITATIONS
145	Highly Efficient Oxidative Cleavage of Carbonâ€Carbon Double Bond over <i>meso</i> â€Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen. Chinese Journal of Chemistry, 2012, 30, 2103-2108.	4.9	23
146	Surface immobilization of \hat{l}^2 -cyclodextrin on hybrid silica and its fast adsorption performance of p-nitrophenol from the aqueous phase. RSC Advances, 2015, 5, 84410-84422.	3.6	23
147	Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration. Molecular Catalysis, 2017, 440, 36-42.	2.0	23
148	A novel system comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene. Catalysis Communications, 2018, 109, 76-79.	3.3	23
149	Enhanced recovery of acetophenone and 1â€phenylethanol from petrochemical effluent by highly porous starch-based hypercrosslinked polymers. Chemical Engineering Journal, 2021, 418, 129351.	12.7	23
150	Preparation and release behaviour of the inclusion complexes of phenylethanol with <i>l²</i> yclodextrin. Flavour and Fragrance Journal, 2016, 31, 206-216.	2.6	22
151	High-Performance P2-Na _{0.70} Mn _{0.80} Co _{0.15} Zr _{0.05} O ₂ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42380-42386.	8.0	22
152	Synergic morphology engineering and pore functionality within a metal–organic framework for trace CO ₂ capture. Journal of Materials Chemistry A, 2022, 10, 881-890.	10.3	22
153	Highly Shape-Selective, Biomimetic, and Efficient Deprotection of Carbonyl Compounds Masked as Ethylene Acetals or Dioxolanes Produced from 1,2-Ethanediol. European Journal of Organic Chemistry, 2003, 2003, 3659-3662.	2.4	21
154	Cytochrome <scp>P450</scp> Enzymeâ€Copper Phosphate Hybrid Nanoâ€Flowers with Superior Catalytic Performances for Selective Oxidation of Sulfides. Chinese Journal of Chemistry, 2017, 35, 693-698.	4.9	21
155	gâ€C ₃ N ₄ /BiYO ₃ Composite for Photocatalytic Hydrogen Evolution. ChemistrySelect, 2018, 3, 5891-5899.	1.5	21
156	Zinc porphyrin-based electron donor–acceptor-conjugated microporous polymer for the efficient photocatalytic oxidative coupling of amines under visible light. Applied Catalysis A: General, 2020, 590, 117352.	4.3	21
157	A forest geotexture-inspired ZnO@Ni/Co layered double hydroxide-based device with superior electrochromic and energy storage performance. Journal of Materials Chemistry A, 2022, 10, 12643-12655.	10.3	21
158	Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: effects of indium on the Ni/Al ₂ O ₃ catalyst. Catalysis Science and Technology, 2022, 12, 4826-4836.	4.1	21
159	Controllable oxidation of sulfides to sulfoxides and sulfones with aqueous hydrogen peroxide in the presence of Î ² -cyclodextrin. Russian Journal of Organic Chemistry, 2006, 42, 959-961.	0.8	20
160	Inclusive separation of acetophenone from petrochemical byâ€product with 1â€phenylethanol via noncovalent interactions. AICHE Journal, 2014, 60, 2962-2975.	3.6	20
161	Tannic Acid as a Polyphenol Materialâ€Assisted Synthesis of Cyclic Carbonates Using CO ₂ as a Feedstock: Kinetic Characteristic and Mechanism Studies. Chinese Journal of Chemistry, 2017, 35, 659-664.	4.9	20
162	Tribological Performance and Surface Analysis of a Borate Calcium as Additive in Lithium and Polyurea Greases. Tribology Transactions, 2017, 60, 621-628.	2.0	20

#	Article	IF	CITATIONS
163	Identification of the Nearby Hydroxyls' Role in Promoting HCHO Oxidation over a Pt Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 8183-8189.	3.7	20
164	Nitrogen and atomic Ni co-doped carbon material for sodium ion storage. Chemical Communications, 2020, 56, 5182-5185.	4.1	20
165	Cobalt Porphyrin Immobilized on Montmorillonite: A Highly Efficient and Reusable Catalyst for Aerobic Oxidation of Alcohols to Carbonyl Compounds. Chinese Journal of Catalysis, 2012, 33, 1906-1912.	14.0	18
166	Pt supported on long-rod β-FeOOH as an efficient catalyst for HCHO oxidation at ambient temperature. Catalysis Science and Technology, 2019, 9, 3287-3294.	4.1	18
167	The Adsorption of Ozone on the Solid Catalyst Surface and the Catalytic Reaction Mechanism for Organic Components. ChemistrySelect, 2020, 5, 15092-15116.	1.5	18
168	Customized H-bonding acceptor and aperture chemistry within a metal-organic framework for efficient C3H6/C3H8 separation. Chemical Engineering Journal, 2021, 426, 131302.	12.7	18
169	In Situ Growth of Oriented Polyaniline Nanorod Arrays on the Graphite Flake for High-Performance Supercapacitors. ACS Omega, 2020, 5, 32395-32402.	3.5	18
170	Crystal facet effects of platinum single-atom catalysts in hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2022, 10, 10837-10843.	10.3	18
171	Probing the Node Chemistry of a Metal–Organic Framework to Achieve Ultrahigh Hydrophobicity and Highly Efficient CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15897-15907.	6.7	17
172	Mechanistic Understanding towards the Role of Cyclohexene in Enhancing the Efficiency of Manganese Porphyrin atalyzed Aerobic Oxidation of Diphenylmethane. European Journal of Inorganic Chemistry, 2018, 2018, 2666-2674.	2.0	16
173	Fabrication of Multicore Milli- and Microcapsules for Controlling Hydrophobic Drugs Release Using a Facile Approach. Industrial & Engineering Chemistry Research, 2019, 58, 17017-17026.	3.7	16
174	Easy fabrication of aromatic-rich cellulose-urethane polymer for preferential adsorption of acetophenone over 1-phenylethanol. Carbohydrate Polymers, 2019, 206, 716-725.	10.2	16
175	The distinct role of non-noble metal Cu NPs deposition in boosting the overall photocatalytic performance over a ternary Zn-based photocatalyst system. Journal of Alloys and Compounds, 2021, 875, 160068.	5.5	16
176	Enhanced catalytic activity and recyclability for oxidation of cinnamaldehyde catalysed by β-cyclodextrin cross-linked with chitosan. Supramolecular Chemistry, 2013, 25, 233-245.	1.2	15
177	Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO ₂ Hydrogenation over Cu–Fe–Ce/HZSMâ€5. ChemPhysChem, 2017, 18, 299-309.	2.1	15
178	Boosting Interfacial Interaction in Hierarchical Core–Shell Nanostructure for Highly Effective Visible Photocatalytic Performance. Journal of Physical Chemistry C, 2018, 122, 6137-6143.	3.1	15
179	Bi― Y odoped TiO2 for Carbon Dioxide Photocatalytic Reduction to Formic Acid under Visible Light Irradiation. Chinese Journal of Chemistry, 2018, 36, 538-544.	4.9	15
180	Preparation of cytochrome P450 enzyme-cobalt phosphate hybrid nano-flowers for oxidative coupling of benzylamine. Enzyme and Microbial Technology, 2019, 131, 109386.	3.2	15

#	Article	IF	CITATIONS
181	New Findings for the Muchâ€Promised Hematite Photoanodes with Gradient Doping and Overlayer Elaboration. Solar Rrl, 2022, 6, .	5.8	15
182	One-Step Ethylene Purification by an Ethane-Screening Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, 14, 15195-15204.	8.0	15
183	Enhanced Photoelectrochemical Oxygen Evolution Reaction Ability of Ironâ€Derived Hematite Photoanode with Titanium Modification. Chemistry - A European Journal, 2015, 21, 19250-19256.	3.3	14
184	Selective Functionalization of Hydrocarbons Using a ppm Bioinspired Molecular Tweezer via Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 6810-6815.	11.2	14
185	<scp>Copperâ€Mediated</scp> and Catalyzed C—H Bond Amination via Chelation Assistance: Scope, Mechanism and Synthetic Applications. Chinese Journal of Chemistry, 2022, 40, 1204-1223.	4.9	14
186	Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots―for Surface-enhanced Raman scattering detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 273, 121030.	3.9	14
187	β-Cyclodextrin Promoted Oxidation of Cinnamaldehyde to Natural Benzaldehyde in Water. Chinese Journal of Chemical Engineering, 2011, 19, 972-977.	3.5	13
188	Simulation of VOCs oxidation in a catalytic nanolith. RSC Advances, 2013, 3, 1103-1111.	3.6	13
189	Theoretical and experimental studies on the separation of cinnamyl acetate and cinnamaldehyde by adsorption onto a 12-cyclodextrin polyurethane polymer. RSC Advances, 2017, 7, 43502-43511.	3.6	13
190	Preparation and release mechanism of lavender oil microcapsules with different combinations of coating materials. Flavour and Fragrance Journal, 2020, 35, 157-166.	2.6	13
191	A cost-effective Î ² -cyclodextrin polymer for selective adsorption and separation of acetophenone and 1-phenylethanol via specific noncovalent molecular interactions. Reactive and Functional Polymers, 2020, 146, 104448.	4.1	13
192	Palladium nanoclusters entrapped in polyurea: A recyclable and efficient catalyst for reduction of nitro-benzenes and hydrodechlorination of halogeno-benzenes. Science China Chemistry, 2010, 53, 1520-1524.	8.2	12
193	Hostâ€guest complexes of estragole with βâ€cyclodextrin: an experimental and theoretical investigation. Flavour and Fragrance Journal, 2017, 32, 102-111.	2.6	12
194	Selfâ€assembled metalloporphyrins–inorganic hybrid flowers and their application to efficient epoxidation of olefins. Journal of Chemical Technology and Biotechnology, 2017, 92, 2594-2605.	3.2	12
195	Distribution of Products from Catalytic Conversion of Cellulose Over Metal-Modified Hierarchical H-ZSM-5 in Aqueous Media. Catalysis Letters, 2019, 149, 2078-2088.	2.6	12
196	Pore size matching up: A novel insight into cotton textile aromatic finishing. Flavour and Fragrance Journal, 2020, 35, 149-156.	2.6	12
197	Precisely Controlled Multidimensional Covalent Frameworks: Polymerization of Supramolecular Colloids. Angewandte Chemie - International Edition, 2020, 59, 21525-21529.	13.8	12
198	The Tribological Properties of Reduced Graphene Oxide Doped by N and B Species with Different Configurations. ACS Applied Materials & Interfaces, 2020, 12, 29737-29746.	8.0	12

#	Article	IF	CITATIONS
199	Biomimetic Aerobic Epoxidation of Alkenes Catalyzed by Cobalt Porphyrin under Ambient Conditions in the Presence of Sunflower Seeds Oil as a Co-Substrate. ACS Omega, 2020, 5, 4890-4899.	3.5	12
200	Cyclohexene Promoted Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions. Chinese Journal of Chemistry, 2020, 38, 458-464.	4.9	12
201	N-formylation of amines using phenylsilane and CO2 over ZnO catalyst under mild condition. Catalysis Communications, 2021, 149, 106195.	3.3	12
202	Enhanced oxygen transfer over bifunctional Mo-based oxametallacycle catalyst for epoxidation of propylene. Journal of Colloid and Interface Science, 2022, 611, 564-577.	9.4	12
203	Catalytic ozonation of cinnamaldehyde to benzaldehyde over CaO: Experiments and intrinsic kinetics. AICHE Journal, 2017, 63, 4403-4417.	3.6	11
204	Measurement and Correlation of Solubility of Two Isomers of Cyanopyridine in Eight Pure Solvents from 268.15 K to 318.15 K. Journal of Chemical & Engineering Data, 2017, 62, 3241-3251.	1.9	11
205	Anodic aluminum oxide supported Pd@CeO2 catalyst for organic gas pollutants removal with an enhanced performance. Catalysis Today, 2020, 355, 602-607.	4.4	11
206	Imidazolium-functionalized stable gel materials for efficient adsorption of phenols from aqueous solutions. Environmental Technology and Innovation, 2020, 17, 100511.	6.1	11
207	Quasiâ€continuous synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy. AICHE Journal, 2021, 67, e17197.	3.6	11
208	Sunscreen Enhancement of Octyl Methoxycinnamate Microcapsules by Using Two Biopolymers as Wall Materials. Polymers, 2021, 13, 866.	4.5	11
209	Charge Regulation of Self-Assembled Tubules by Protonation for Efficiently Selective and Controlled Drug Delivery. IScience, 2019, 19, 224-231.	4.1	10
210	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	4.1	10
211	Acetylacetone as an oxygen activator to improve efficiency for aerobic oxidation of toluene and its derivatives by using cobalt <i>meso</i> -tetraphenylporphyrin. New Journal of Chemistry, 2020, 44, 10286-10291.	2.8	10
212	Oxygen Atom Transfer Mechanism for <scp>Vanadiumâ€Oxo</scp> Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. Chinese Journal of Chemistry, 2022, 40, 115-122.	4.9	10
213	A metal-free hydroxyl functionalized quaternary phosphine type ionic liquid polymer for cycloaddition of CO ₂ and epoxides. Dalton Transactions, 2022, 51, 1303-1307.	3.3	10
214	One-pot oxidation of sulfides to sulfones by reusable heterogeneous ruthenium catalyst in the presence of molecular oxygen. Reaction Kinetics and Catalysis Letters, 2007, 90, 259-266.	0.6	9
215	pH-Dependence of the Aqueous Phase Room Temperature BrÃ,nsted Acid-Catalyzed Chemoselective Oxidation of Sulfides with H2O2. Molecules, 2015, 20, 16709-16722.	3.8	9
216	Synergistic Production of Methyl Lactate from Carbohydrates Using an Ionic Liquid Functionalized Sn ontaining Catalyst. ChemCatChem, 2018, 10, 4154-4161.	3.7	9

#	Article	IF	CITATIONS
217	Two-Dimensional Cationic Networks and Their Spherical Curvature with Tunable Opening–Closing. Nano Letters, 2019, 19, 9131-9137.	9.1	9
218	Deactivation Mechanism, Countermeasures, and Enhanced CH ₄ Oxidation Performance of Nickel/Cobalt Oxides. Energy Technology, 2020, 8, 1900641.	3.8	9
219	Zn2+ intercalation/de-intercalation-based aqueous electrochromic titanium dioxide electrode with Zn-ion storage. Ionics, 2021, 27, 4429-4437.	2.4	9
220	Mechanism and kinetics of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by cobalt porphyrin in a membrane microchannel reactor. Chemical Engineering Science, 2021, 245, 116847.	3.8	9
221	Alkaline hydrolysis of cinnamaldehyde to benzaldehyde in the presence of β•yclodextrin. AICHE Journal, 2010, 56, 466-476.	3.6	8
222	β-Cyclodextrin polymer promoted green synthesis of cinnamaldehyde to natural benzaldehyde in aqueous solution. Supramolecular Chemistry, 2012, 24, 379-384.	1.2	8
223	Thermodynamic Analysis of Hydrogen Generation from Methanol–Formic Acid–Steam Autothermal System. Energy & Fuels, 2013, 27, 5449-5458.	5.1	8
224	Effect of substitution degree of 2-hydroxypropyl-β-cyclodextrin on the alkaline hydrolysis of cinnamaldehyde to benzaldehyde. Supramolecular Chemistry, 2014, 26, 796-803.	1.2	8
225	Synergistic effect of hydrogen bonding mediated selective synthesis of benzaldehyde in water. Chinese Journal of Catalysis, 2014, 35, 590-598.	14.0	8
226	Antiâ€Coke Properties of Acidâ€Treated Bentoniteâ€Supported Nickelâ€Boron Catalyst. Chemical Engineering and Technology, 2018, 41, 175-181.	1.5	8
227	Hierarchical BiOHC2O4/Bi2O2CO3 composite microrods fabricated via insitu anion ion-exchange and their advanced photocatalytic performance. Journal of Alloys and Compounds, 2020, 840, 155687.	5.5	8
228	Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene. Dalton Transactions, 2021, 50, 11711-11715.	3.3	8
229	Efficient catalytic oxidation of primary benzylic C H bonds with molecular oxygen catalyzed by cobalt porphyrins and N-hydroxyphthalimide (NHPI) in supercritical carbon dioxide. Catalysis Communications, 2021, 159, 106353.	3.3	8
230	Ni/CeO ₂ prepared by improved polyol method for DRM with highly dispersed Ni. , 2021, 11, 1245-1264.		8
231	Ag Nanoparticles Anchored on Nanotubular Porous Porphyrin Networks for Carboxylative Cyclization of Propargyl Alcohols with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11,	2.7	8
232	Development of Highly Effective Nanoparticle Spinel Catalysts for Aerobic Oxidation of Benzylic Alcohols. Chinese Journal of Chemistry, 2002, 20, 944-950.	4.9	7
233	Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide. New Journal of Chemistry, 2019, 43, 19415-19421.	2.8	7
234	Mechanism for efficient separation of eugenol and eugenol acetate with <i>β</i> -cyclodextrin as a selective solvent. Supramolecular Chemistry, 2019, 31, 767-775.	1.2	7

#	Article	IF	CITATIONS
235	Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Industrial & Engineering Chemistry Research, 2020, 59, 19982-19988.	3.7	7
236	Kinetic evidence for the mechanism of liquid-solid phase oxidation of alcohols. Reaction Kinetics and Catalysis Letters, 2004, 82, 97-103.	0.6	6
237	Reactivation and Reuse of Platinumâ€Based Spent Catalysts for Combustion of Exhaust Organic Gases. Chemical Engineering and Technology, 2015, 38, 409-415.	1.5	6
238	Immobilization of Î ² -CD on a Hyper-Crosslinked Polymer for the Enhanced Removal of Amines from Aqueous Solutions. Polymers, 2020, 12, 1620.	4.5	6
239	Synergy ascension of SnS/MoS ₂ binary metal sulfides on initial coulombic efficiency and stable capacity for lithium storage. RSC Advances, 2021, 11, 17332-17339.	3.6	6
240	One-pot fabrication of lignin-based aromatic porous polymers for efficient removal of bisphenol AF from water. International Journal of Biological Macromolecules, 2021, 175, 396-405.	7.5	6
241	Bagasse Cellulose Composite Superabsorbent Material with Double-Crosslinking Network Using Chemical Modified Nano-CaCO3 Reinforcing Strategy. Nanomaterials, 2022, 12, 1459.	4.1	6
242	Efficient recovery of aromatic compounds from the wastewater of styrene monomer and propylene oxide co-production plant via hypercrosslinked aryl-rich starch-β-cyclodextrin polymeric sorbent. Chinese Journal of Chemical Engineering, 2022, 49, 150-160.	3.5	6
243	Oxidative cleavage of CÂ=ÂC bond of cinnamaldehyde to benzaldehyde in the presence of β-cyclodextrin under mild conditions. Supramolecular Chemistry, 2012, 24, 247-254.	1.2	5
244	Shape-selective separation of geraniol and nerol via noncovalent interactionswith β-cyclodextrin. Separation Science and Technology, 2016, 51, 168-180.	2.5	5
245	Facile separation of cinnamyl acetate and cinnamaldehyde based on host–guest complexation with β•yclodextrin. Flavour and Fragrance Journal, 2018, 33, 285-293.	2.6	5
246	Bipolar Organic Material Assisted Surface and Boundary Defects Passivation for Highly Efficient MAPbI 3 â€Based Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000369.	5.8	5
247	Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. Materials, 2021, 14, 2680.	2.9	5
248	A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. New Journal of Chemistry, 2021, 45, 13021-13028.	2.8	5
249	Catalytically-active porous assembly with dynamic pulsating motion for efficient exchange of products and reagents. Communications Chemistry, 2020, 3, .	4.5	5
250	Solid–Liquid Phase Equilibrium of Isophthalonitrile in 16 Solvents from T = 273.15 to 324.75 K and Mixing Properties of Solutions. Journal of Chemical & Engineering Data, 0, , .	1.9	5
251	Cellulose based hyper-crosslinked polymer for efficiently recovering valuable materials from PO/SM wastewater. International Journal of Biological Macromolecules, 2021, 193, 71-80.	7.5	5
252	UV-Vis-NIR full-range-responsive carbon-rich carbon nitride nanotubes for enhanced photocatalytic performance. New Journal of Chemistry, 2022, 46, 4654-4665.	2.8	5

#	Article	IF	CITATIONS
253	Bottom-up oriented synthesis of metalloporphyrin-based porous ionic polymers for the cycloaddition of CO2 to epoxides. Molecular Catalysis, 2022, 521, 112171.	2.0	5
254	β-Cyclodextrin promoted oxidation of primary amines to nitriles in water. Frontiers of Chemical Engineering in China, 2009, 3, 196-200.	0.6	4
255	Zr-Modified ZnO for the Selective Oxidation of Cinnamaldehyde to Benzaldehyde. Catalysts, 2019, 9, 716.	3.5	4
256	Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide. ECS Journal of Solid State Science and Technology, 2020, 9, 041014.	1.8	4
257	Substrate specificity in the biomimetic catalytic aerobic oxidation of styrene and cyclohexanone by metalloporphyrins: kinetics and mechanistic study. Green Chemical Engineering, 2021, 2, 217-223.	6.3	4
258	Ionization of Porous Hypercrosslinked Polymers for Catalyzing Room-Temperature CO2 Reduction via Formamides Synthesis. Catalysis Letters, 2021, 151, 2919-2927.	2.6	4
259	Enhanced Sunscreen Effects via Layer-By-Layer Self-Assembly of Chitosan/Sodium Alginate/Calcium Chloride/EHA. Molecules, 2022, 27, 1148.	3.8	4
260	A core-shell structure of β-cyclodextrin polyisocyanate boosts selective recovery of acetophenone from petrochemical by-products. Chemical Engineering Journal, 2022, , 136191.	12.7	4
261	Rapid Synthesis of Alkyloxy Porphyrins Under Microwave Irradiation. Synthetic Communications, 2008, 39, 20-28.	2.1	3
262	Acid-treated bentonite-supported Ni catalysts via rapid microwave-assisted drying for nitrobenzene hydrogenation. Chemical Engineering Communications, 2018, 205, 624-636.	2.6	3
263	Synergistic catalytic oxidation of cinnamaldehydes by poly(vinyl alcohol) functionalized β-cyclodextrin polymer in CaO ₂ /HCO ₃ ^{â^'} system. Supramolecular Chemistry, 2018, 30, 134-145.	1.2	3
264	Selfâ€Assembled Metalloporphyrins–Magnesium Phosphate Hybrid Spheres as Efficient Catalysts for Cycloaddition of Carbon Dioxide. ChemistrySelect, 2019, 4, 8233-8236.	1.5	3
265	Tubular metal organic frameworks from the curvature of 2D-honeycombed metal coordination. Dalton Transactions, 2020, 49, 2403-2406.	3.3	3
266	Ba-modified Ni-P amorphous alloy/acidified bentonite catalyst: preparation and the catalytic hydrogenation of nitrobenzene to aniline. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 805-818.	1.7	3
267	From normal crosslinking to core–shell structure: Improved performance of β-cyclodextrin based adsorbent toward efficient separation of acetophenone and 1-phenylethanol. Separation and Purification Technology, 2022, 292, 120955.	7.9	3
268	Fabricating hypercrosslinked aromatic-rich starch urethane polymer with enhanced adsorption performance for separation of acetophenone and 1-phenylethanol. Reactive and Functional Polymers, 2022, 175, 105272.	4.1	3
269	Deprotonation-Induced Phase Transitions in the Self-Assembled Structure of Prochiral Carboxyl Derivatives. Journal of Physical Chemistry C, 2022, 126, 9567-9571.	3.1	3
270	A promising Mo-based lithium-rich phase for Li-ion batteries. RSC Advances, 2019, 9, 17852-17855.	3.6	2

#	Article	IF	CITATIONS
271	Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions. Chemical Research in Chinese Universities, 2019, 35, 251-255.	2.6	2
272	Precisely Controlled Multidimensional Covalent Frameworks: Polymerization of Supramolecular Colloids. Angewandte Chemie, 2020, 132, 21709-21713.	2.0	2
273	Catalytic Ozonation of Cinnamaldehyde to Benzaldehyde over Ca(OH) ₂ . ChemistrySelect, 2021, 6, 5052-5060.	1.5	2
274	On-Surface Synthesis of 2D Porphyrin-Based Covalent Organic Frameworks Using Terminal Alkynes. Chemistry of Materials, 2021, 33, 8677-8684.	6.7	2
275	Preparation of high purity squalene from soybean oil deodorizer distillate with the combination of macroporous resin and thin-film evaporation coupling distillation. Separation Science and Technology, 2020, 55, 1611-1622.	2.5	1
276	Liquid-phase epoxidation of propylene with molecular oxygen by chloride manganese meso-tetraphenylporphyrins. Chinese Journal of Chemical Engineering, 2022, 48, 61-65.	3.5	1
277	Cation…Anionâ€Based Physicochemical Mechanisms for Anodicallyâ€Coloring Electrochromic Nickel Oxide Thin Films. ChemElectroChem, 0, , .	3.4	1
278	Ultrahigh-loading single-site Zn catalyst for efficient and ambient hydrogen generation from silanes. Dalton Transactions, 2022, , .	3.3	1
279	Progress in the application of metalloporphyrins compounds in catalytic oxidation reactions. Scientia Sinica Chimica, 2022, 52, 1224-1238.	0.4	1
280	Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. Chinese Chemical Letters, 2023, 34, 107658.	9.0	1
281	Metal-free chemoselective oxidation of sulfides to sulfoxides catalyzed by immobilized l-aspartic acid and l-glutamic acid in an aqueous phase at room temperature. New Journal of Chemistry, 2016, 40, 4874-4878.	2.8	0
282	Reply to "Comment on â€~Measurement and Correlation of Solubility of Two Isomers of Cyanopyridine in Eight Pure Solvents from 268.15 to 318.15 K'― Journal of Chemical & Engineering Data, 2018, 63, 2316-2321.	1.9	0
283	Catalytic Production of Methyl Lactate from Fructoseâ€Based Carbohydrates Using Yttrium Modified ZSMâ€5 Zeolite. ChemistrySelect, 2021, 6, 10674-10681.	1.5	0
284	Nâ€hydroxyphthalimide Catalyzed Epoxidation of Inactive Aliphatic Olefins with Air at Room Temperature. Asian Journal of Organic Chemistry, 0, , .	2.7	0
285	Enhanced Antioxidant Activity of Fresh Fruits through Salicylic Acid/β-CD Hydroalcoholic Gels. Gels, 2022, 8, 61.	4.5	0