
Nagore Gabilondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7987091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive inks suitable for 3D printing based on waterborne polyurethane urea, cellulose nanocrystals and Salvia extract. Reactive and Functional Polymers, 2022, 175, 105286.	2.0	2
2	3D printing of customized all-starch tablets with combined release kinetics. International Journal of Pharmaceutics, 2022, 622, 121872.	2.6	11
3	Furan-containing biobased polyurethane nanofibers: A new versatile and green support clickable via Diels-Alder reaction. Reactive and Functional Polymers, 2022, 178, 105353.	2.0	2
4	Tailorâ€Made 3D Printed Meshes of Alginateâ€Waterborne Polyurethane as Suitable Implants for Hernia Repair. Macromolecular Bioscience, 2022, 22, .	2.1	5
5	Role of in situ added cellulose nanocrystals as rheological modulator of novel waterborne polyurethane urea for 3D-printing technology. Cellulose, 2021, 28, 4729-4744.	2.4	17
6	Morphological Analysis of Several Bamboo Species with Potential Structural Applications. Polymers, 2021, 13, 2126.	2.0	8
7	Design of a Waterborne Polyurethane–Urea Ink for Direct Ink Writing 3D Printing. Materials, 2021, 14, 3287.	1.3	17
8	A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields. Cellulose, 2021, 28, 8229-8253.	2.4	74
9	3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydrate Polymers, 2021, 264, 118026.	5.1	43
10	Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. International Journal of Pharmaceutics, 2021, 609, 121124.	2.6	14
11	Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. International Journal of Biological Macromolecules, 2021, 191, 1212-1220.	3.6	18
12	The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. International Journal of Biological Macromolecules, 2020, 143, 265-272.	3.6	25
13	Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. European Polymer Journal, 2020, 123, 109415.	2.6	54
14	Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability. Journal of Materials Chemistry B, 2020, 8, 9804-9811.	2.9	18
15	Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. International Journal of Biological Macromolecules, 2020, 163, 1249-1260.	3.6	28
16	β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 2020, 248, 116811.	5.1	35
17	Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity. EXPRESS Polymer Letters, 2020, 14, 1018-1033.	1.1	8
18	Influence of Process Parameters in Graphene Oxide Obtention on the Properties of Mechanically Strong Alginate Nanocomposites. Materials, 2020, 13, 1081.	1.3	11

NAGORE GABILONDO

#	Article	IF	CITATIONS
19	Dual charged folate labelled chitosan nanogels with enhanced mucoadhesion capacity for targeted drug delivery. European Polymer Journal, 2020, 134, 109847.	2.6	16
20	Valorization of apple waste for active packaging: multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packaging and Shelf Life, 2019, 21, 100356.	3.3	39
21	In situ cross–linked chitosan hydrogels via Michael addition reaction based on water–soluble thiol–maleimide precursors. European Polymer Journal, 2019, 119, 376-384.	2.6	45
22	Self-healable hyaluronic acid/chitosan polyelectrolyte complex hydrogels and multilayers. European Polymer Journal, 2019, 120, 109268.	2.6	55
23	Reversible swelling behaviour of Diels–Alder clicked chitosan hydrogels in response to pH changes. EXPRESS Polymer Letters, 2019, 13, 27-36.	1.1	11
24	Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohydrate Polymers, 2018, 193, 362-372.	5.1	73
25	Synthesis of stimuli–responsive chitosan–based hydrogels by Diels–Alder cross–linking`clickẤ reaction as potential carriers for drug administration. Carbohydrate Polymers, 2018, 183, 278-286.	5.1	66
26	Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydrate Polymers, 2018, 202, 372-381.	5.1	54
27	Modification of Pea Starch and Dextrin Polymers with Isocyanate Functional Groups. Polymers, 2018, 10, 939.	2.0	33
28	Application of cider by-products for medium chain length polyhydroxyalkanoate production by Pseudomonas putida KT2440. European Polymer Journal, 2018, 108, 1-9.	2.6	26
29	<scp>D</scp> â€isosorbide and 1,3â€propanediol as plasticizers for starchâ€based films: Characterization and aging study. Journal of Applied Polymer Science, 2017, 134, .	1.3	26
30	Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via â€~click' chemistry for controlled drug release. International Journal of Biological Macromolecules, 2017, 102, 1-9.	3.6	80
31	By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose, 2017, 24, 2071-2082.	2.4	38
32	Innovative Systems from Clickable Biopolymer-Based Hydrogels for Drug Delivery. , 2017, , 117-133.		1
33	Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes. Journal of Applied Polymer Science, 2016, 133, .	1.3	27
34	Improved Permeability Properties for Bacterial Cellulose/Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling. Journal of Renewable Materials, 2016, 4, 57-65.	1.1	14
35	Shape-memory properties of crosslinked biobased polyurethanes. European Polymer Journal, 2016, 78, 253-263.	2.6	50
36	Click Crosslinked Chitosan/Gold Nanocomposite Hydrogels. Macromolecular Materials and Engineering, 2016, 301, 1295-1300.	1.7	22

NAGORE GABILONDO

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Polyurethanes with High Renewable Carbon Content and Tailored Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 5684-5692.	3.2	50
38	Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohydrate Polymers, 2016, 149, 94-101.	5.1	60
39	Click gelatin hydrogels: Characterization and drug release behaviour. Materials Letters, 2016, 182, 134-137.	1.3	33
40	Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocomposites. European Polymer Journal, 2016, 76, 99-109.	2.6	49
41	Designing hydrogel nanocomposites using TiO2 as clickable cross-linkers. Journal of Materials Science, 2016, 51, 5073-5081.	1.7	13
42	Green chemistry for the cross-linking of photo-sensitive furan modified gelatin. Materials Letters, 2015, 160, 142-145.	1.3	15
43	Biocompatible Hydrogel Nanocomposite with Covalently Embedded Silver Nanoparticles. Biomacromolecules, 2015, 16, 1301-1310.	2.6	109
44	Effect of maleimide-functionalized gold nanoparticles on hybrid biohydrogels properties. RSC Advances, 2015, 5, 50268-50277.	1.7	19
45	Hydrogel synthesis by aqueous Dielsâ€Alder reaction between furan modified methacrylate and polyetheramineâ€based bismaleimides. Journal of Polymer Science Part A, 2015, 53, 699-708.	2.5	27
46	Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 2015, 132, .	1.3	64
47	Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydrate Polymers, 2015, 117, 83-90.	5.1	117
48	Diels–Alder "click―chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels. RSC Advances, 2014, 4, 35578.	1.7	71
49	Green chemistry for the synthesis of methacrylate-based hydrogels crosslinked through Diels–Alder reaction. European Polymer Journal, 2013, 49, 3998-4007.	2.6	51
50	Property tailoring of phenol–formaldehyde matrices by control of reactant molar ratio and thermoplastic modification. Polymer International, 2011, 60, 851-858.	1.6	0
51	Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose, 2010, 17, 661-669.	2.4	132
52	Mechanical and thermal properties of soy protein films processed by casting and compression. Journal of Food Engineering, 2010, 100, 145-151.	2.7	165
53	Isoconversional kinetic analysis of resol-clay nanocomposites. Journal of Thermal Analysis and Calorimetry, 2009, 96, 567-573.	2.0	10
54	Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering and Science, 2008, 48, 297-306.	1.5	238

4

NAGORE GABILONDO

#	Article	IF	CITATIONS
55	Curing characteristics of resol-layered silicate nanocomposites. Thermochimica Acta, 2008, 467, 73-79.	1.2	17
56	Synthesis and characterization of resolâ€layered silicate nanocomposites. Journal of Applied Polymer Science, 2007, 106, 2800-2807.	1.3	18
57	Curing kinetics of amine and sodium hydroxide catalyzed phenol-formaldehyde resins. Journal of Thermal Analysis and Calorimetry, 2007, 90, 229-236.	2.0	44
58	Toward microphase separation in epoxy systems containing PEO–PPO–PEO block copolymers by controlling cure conditions and molar ratios between blocks. Colloid and Polymer Science, 2006, 284, 1403-1410.	1.0	27
59	Synthesis and characterization of phenolic novolacs modified by chestnut and mimosa tannin extracts. Journal of Applied Polymer Science, 2006, 100, 4412-4419.	1.3	37
60	Polymerization of resole resins with several formaldehyde/phenol molar ratios: Amine catalysts against sodium hydroxide catalysts. Journal of Applied Polymer Science, 2006, 102, 2623-2631.	1.3	28
61	Rheokinetic and Dynamic Mechanical Analysis of Tetrafunctional Epoxy/anhydride Mixtures. Influence of Stoichiometry and Cure Conditions. High Performance Polymers, 2006, 18, 17-30.	0.8	3
62	Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer. Polymer, 2005, 46, 7082-7093.	1.8	104
63	Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4′-diphenylmethane diisocyanate. European Polymer Journal, 2005, 41, 3051-3059.	2.6	43
64	Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Composites Science and Technology, 2005, 65, 2189-2197.	3.8	39
65	Cure kinetics of epoxy systems modified with block copolymers. Polymer International, 2004, 53, 1495-1502.	1.6	39
66	Curing of an epoxy resin modified with poly(methylmethacrylate) monitored by simultaneous dielectric/near infrared spectroscopies. European Polymer Journal, 2004, 40, 129-136.	2.6	43
67	Morphological Characterization and Mechanical Behavior of Poly(styrene-co-acrylonitrile)-modified Epoxy Matrices. High Performance Polymers, 2004, 16, 557-568.	0.8	2
68	Polymerization of Formaldehyde and Phenol at Different Pressures. High Performance Polymers, 2002, 14, 415-423.	0.8	8