
Wonjun Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7987026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental analysis of artificial intelligence-based model predictive control for thermal energy storage under different cooling load conditions. Sustainable Cities and Society, 2022, 79, 103700.	10.4	13
2	Bayesian prediction model of thermally satisfied occupants considering stochasticity due to inter- and intra-individual thermal sensation variations. Journal of Building Engineering, 2022, 52, 104414.	3.4	3
3	Influence of a Better Prediction of Thermal Satisfaction for the Implementation of an HVAC-Based Demand Response Strategy. Energies, 2022, 15, 3094.	3.1	0
4	Probabilistic uncertainty quantification of borehole thermal resistance in real-world scenarios. Energy, 2022, , 124400.	8.8	5
5	Development of probabilistic assessment framework for pedestrian wind environment using Bayesian technique. Building and Environment, 2021, 187, 107419.	6.9	10
6	Development of chiller-attached apparatus for accurate initial ground temperature measurement: Insights from global sensitivity analysis of thermal response tests. Energy and Buildings, 2021, 238, 110841.	6.7	8
7	Experimental Investigation of Model Predictive Control for Thermal Energy Storage System Using Artificial Intelligence. , 2021, , .		0
8	Unsteady-state exergetic performance comparison of externally and internally insulated building envelopes. International Journal of Heat and Mass Transfer, 2020, 163, 120414.	4.8	5
9	Model predictive control of building energy systems with thermal energy storage in response to occupancy variations and time-variant electricity prices. Energy and Buildings, 2020, 225, 110291.	6.7	31
10	Development of physiological human model considering mist wettedness for mist-spraying environments. Building and Environment, 2020, 180, 106706.	6.9	10
11	Critical comparison between thermal performance test (TPT) and thermal response test (TRT): Differences in heat transfer process and extractable information. Energy Conversion and Management, 2019, 199, 111967.	9.2	12
12	Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems. Applied Energy, 2019, 251, 113359.	10.1	16
13	Artificial neural network prediction models of stratified thermal energy storage system and borehole heat exchanger for model predictive control. Science and Technology for the Built Environment, 2019, 25, 534-548.	1.7	13
14	Unsteady-state exergy analysis for heat conduction of homogeneous solids under periodic boundary conditions. International Journal of Heat and Mass Transfer, 2019, 139, 773-788.	4.8	2
15	Exergy analysis of solar thermal energy utilization for buildings: comparison between Multiple source & Multiple use Heat Pump (MMHP) and Solar Water Heater (SWH) systems for winter season. IOP Conference Series: Materials Science and Engineering, 2019, 609, 062015.	0.6	0
16	Impact of long-term operation of ground-source heat pump on subsurface thermal state in urban areas. Sustainable Cities and Society, 2018, 38, 429-439.	10.4	51
17	Exergy analysis for unsteady-state heat conduction. International Journal of Heat and Mass Transfer, 2018, 116, 1124-1142.	4.8	21
18	Bayesian inference for thermal response test parameter estimation and uncertainty assessment. Applied Energy, 2018, 209, 306-321.	10.1	51

Wonjun Choi

#	Article	IF	CITATIONS
19	Two thermal performance test (TPT) datasets of a single U-tube borehole heat exchanger with inlet setpoint temperatures of 30†°C and 40†°C. Data in Brief, 2018, 20, 1769-1774.	1.0	3
20	New perspectives in thermal performance test: Cost-effective apparatus and extended data analysis. Energy and Buildings, 2018, 180, 109-121.	6.7	16
21	Bayesian inference of structural error in inverse models of thermal response tests. Applied Energy, 2018, 228, 1473-1485.	10.1	16
22	Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature. Applied Energy, 2017, 193, 466-478.	10.1	64
23	Exergy analysis of a hybrid ground-source heat pump system. Applied Energy, 2017, 204, 31-46.	10.1	54
24	Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers. Renewable Energy, 2016, 96, 891-903.	8.9	60
25	Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment. Renewable Energy, 2016, 85, 1090-1105.	8.9	35
26	Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis. Renewable Energy, 2016, 85, 306-318.	8.9	28
27	Development and Validation of Disturbance-considering Numerical Model for Investigation of Error in Thermal Response Tests. Energy Procedia, 2015, 78, 1956-1961.	1.8	0
28	Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method. Applied Energy, 2015, 148, 476-488.	10.1	53
29	Optimal design of a multi-story double skin facade. Energy and Buildings, 2014, 76, 143-150.	6.7	51
30	Load characteristics and operation strategies of building integrated with multi-story double skin facade. Energy and Buildings, 2013, 60, 185-198.	6.7	53
31	Operation and control strategies for multi-storey double skin facades during the heating season. Energy and Buildings, 2012, 49, 454-465.	6.7	54
32	Development of TPRT (Thermal Performance-Response Test) for Borehole Heat Exchanger Design. , 0, , .		1