Dolph Schluter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986982/publications.pdf

Version: 2024-02-01

162 31,874 75
papers citations h-index

174 174 20818
all docs docs citations times ranked citing authors

158

g-index

#	Article	IF	CITATIONS
1	Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biology, 2022, 20, e3001469.	5.6	29
2	Faster evolution of a premating reproductive barrier is not associated with faster speciation rates in New World passerine birds. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211514.	2.6	11
3	Savannas are vital but overlooked carbon sinks. Science, 2022, 375, 392-392.	12.6	11
4	Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evolution Letters, 2022, 6, 34-45.	3.3	9
5	The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecology Letters, 2022, 25, 635-646.	6.4	11
6	A test of frequencyâ€dependent selection in the evolution of a generalist phenotype. Ecology and Evolution, 2022, 12, e8831.	1.9	1
7	Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220422.	2.6	5
8	Three problems in the genetics of speciation by selection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	31
9	Patterns, Predictors, and Consequences of Dominance in Hybrids. American Naturalist, 2021, 197, E72-E88.	2.1	45
10	On the Origin of Coexisting Species. Trends in Ecology and Evolution, 2021, 36, 284-293.	8.7	31
11	Fitness maps to a large-effect locus in introduced stickleback populations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
12	Incomplete reproductive isolation and strong transcriptomic response to hybridization between sympatric sister species of salmon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203020.	2.6	6
13	Adaptation and Latitudinal Gradients in Species Interactions: Nest Predation in Birds. American Naturalist, 2020, 196, E160-E166.	2.1	17
14	Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts. Molecular Biology and Evolution, 2020, 37, 2192-2196.	8.9	12
15	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146
16	Pelagic fish predation is stronger at temperate latitudes than near the equator. Nature Communications, 2020, $11,1527.$	12.8	18
17	Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. Ecography, 2019, 42, 1832-1840.	4.5	43
18	Genetics of adaptation: Experimental test of a biotic mechanism driving divergence in traits and genes. Evolution Letters, 2019, 3, 513-520.	3.3	17

#	Article	IF	CITATIONS
19	A Single Interacting Species Leads to Widespread Parallel Evolution of the Stickleback Genome. Current Biology, 2019, 29, 530-537.e6.	3.9	33
20	Parallel genetic evolution and speciation from standing variation. Evolution Letters, 2019, 3, 129-141.	3.3	87
21	Parallel introgression and selection on introduced alleles in a native species. Molecular Ecology, 2019, 28, 2802-2813.	3.9	29
22	Parallel changes in gut microbiome composition and function during colonization, local adaptation and ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191911.	2.6	41
23	DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science, 2019, 363, 81-84.	12.6	162
24	The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology and Evolution, 2018, 2, 459-464.	7.8	91
25	Moving Character Displacement beyond Characters Using Contemporary Coexistence Theory. Trends in Ecology and Evolution, 2018, 33, 74-84.	8.7	63
26	Speciation and the City. Trends in Ecology and Evolution, 2018, 33, 815-826.	8.7	62
27	Pharmacological evidence that DAPI inhibits NHE2 in Fundulus heteroclitus acclimated to freshwater. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 211, 1-6.	2.6	3
28	Speciation gradients and the distribution of biodiversity. Nature, 2017, 546, 48-55.	27.8	212
29	Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends in Ecology and Evolution, 2017, 32, 403-415.	8.7	54
30	Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation. Current Biology, 2017, 27, 3344-3349.e4.	3.9	56
31	Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds. Evolution; International Journal of Organic Evolution, 2017, 71, 2230-2242.	2.3	34
32	Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Molecular Ecology, 2017, 26, 4378-4390.	3.9	121
33	The temporal window of ecological adaptation in postglacial lakes: a comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evolutionary Biology, 2016, 16, 102.	3.2	14
34	Piscivore addition causes a trophic cascade within and across ecosystem boundaries. Oikos, 2016, 125, 1782-1789.	2.7	15
35	Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks. Evolution; International Journal of Organic Evolution, 2016, 70, 887-902.	2.3	33
36	Rapid adaptive evolution of colour vision in the threespine stickleback radiation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160242.	2.6	42

#	Article	IF	Citations
37	Cline coupling and uncoupling in a stickleback hybrid zone. Evolution; International Journal of Organic Evolution, 2016, 70, 1023-1038.	2.3	31
38	Ecological Impacts of Reverse Speciation in Threespine Stickleback. Current Biology, 2016, 26, 490-495.	3.9	61
39	Speciation, Ecological Opportunity, and Latitude. American Naturalist, 2016, 187, 1-18.	2.1	132
40	Intraguild predation leads to genetically based character shifts in the threespine stickleback. Evolution; International Journal of Organic Evolution, 2015, 69, 3194-3203.	2.3	23
41	Discriminating Selection on Lateral Plate Phenotype and Its Underlying Gene, <i>Ectodysplasin </i> Threespine Stickleback. American Naturalist, 2015, 185, 150-156.	2.1	28
42	Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback. Genetics, 2015, 201, 1189-1200.	2.9	61
43	Evolved tooth gain in sticklebacks is associated with a <i>cis</i> -regulatory allele of <i>Bmp6</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13912-13917.	7.1	83
44	Reversed brain size sexual dimorphism accompanies loss of parental care in white sticklebacks. Ecology and Evolution, 2014, 4, 3236-3243.	1.9	26
45	Modular Skeletal Evolution in Sticklebacks Is Controlled by Additive and Clustered Quantitative Trait Loci. Genetics, 2014, 197, 405-420.	2.9	122
46	Advances in <scp>E</scp> cological <scp>S</scp> peciation: an integrative approach. Molecular Ecology, 2014, 23, 513-521.	3.9	63
47	Genetics of ecological divergence during speciation. Nature, 2014, 511, 307-311.	27.8	264
48	Maintenance of a Genetic Polymorphism with Disruptive Natural Selection in Stickleback. Current Biology, 2014, 24, 1289-1292.	3.9	19
49	Does evolutionary theory need a rethink?. Nature, 2014, 514, 161-164.	27.8	727
50	EXPERIMENTAL CONFIRMATION THAT BODY SIZE DETERMINES MATE PREFERENCE VIA PHENOTYPE MATCHING IN A STICKLEBACK SPECIES PAIR. Evolution; International Journal of Organic Evolution, 2013, 67, no-no.	2.3	40
51	Weak habitat isolation in a threespine stickleback (Gasterosteusspp.) species pair. Biological Journal of the Linnean Society, 2013, 110, 466-476.	1.6	9
52	Ecological and Evolutionary Effects of Stickleback on Community Structure. PLoS ONE, 2013, 8, e59644.	2.5	37
53	Niche Specialization Influences Adaptive Phenotypic Plasticity in the Threespine Stickleback. American Naturalist, 2012, 180, 50-59.	2.1	94
54	The probability of genetic parallelism and convergence in natural populations. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 5039-5047.	2.6	372

#	Article	IF	CITATIONS
55	A Genome-wide SNP Genotyping Array Reveals Patterns of Global and Repeated Species-Pair Divergence in Sticklebacks. Current Biology, 2012, 22, 83-90.	3.9	212
56	INTRAGUILD PREDATION DRIVES EVOLUTIONARY NICHE SHIFT IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 1819-1832.	2.3	68
57	GENETIC SIGNATURE OF ADAPTIVE PEAK SHIFT IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 2439-2450.	2.3	75
58	The genes underlying the process of speciation. Trends in Ecology and Evolution, 2011, 26, 160-167.	8.7	268
59	Strong and consistent natural selection associated with armour reduction in sticklebacks. Molecular Ecology, 2011, 20, 2483-2493.	3.9	56
60	Colour plasticity and background matching in a threespine stickleback species pair. Biological Journal of the Linnean Society, 2011, 102, 902-914.	1.6	35
61	Rapid evolution of cold tolerance in stickleback. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 233-238.	2.6	129
62	Are rates of molecular evolution in mammals substantially accelerated in warmer environments?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1291-1293.	2.6	11
63	Natural selection and the genetics of adaptation in threespine stickleback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2479-2486.	4.0	69
64	Resource Competition and Coevolution in Sticklebacks. Evolution: Education and Outreach, 2010, 3, 54-61.	0.8	10
65	EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	672
66	Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a <i>Pitx1</i> Enhancer. Science, 2010, 327, 302-305.	12.6	901
67	Losos' lizards. Trends in Ecology and Evolution, 2010, 25, 322.	8.7	0
68	Do riparian zones qualify as critical habitat for endangered freshwater fishes?. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1197-1204.	1.4	50
69	The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21737-21742.	7.1	134
70	Evolutionary diversification in stickleback affects ecosystem functioning. Nature, 2009, 458, 1167-1170.	27.8	309
71	ENVIRONMENT SPECIFIC PLEIOTROPY FACILITATES DIVERGENCE AT THE <i>ECTODYSPLASIN </i> THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2009, 63, 2831-2837.	2.3	74
72	Evidence for Ecological Speciation and Its Alternative. Science, 2009, 323, 737-741.	12.6	1,243

#	Article	IF	CITATIONS
73	Genetics and ecological speciation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9955-9962.	7.1	511
74	Adaptation from standing genetic variation. Trends in Ecology and Evolution, 2008, 23, 38-44.	8.7	1,707
75	Natural Selection on a Major Armor Gene in Threespine Stickleback. Science, 2008, 322, 255-257.	12.6	341
76	cis-Regulatory Changes in Kit Ligand Expression and Parallel Evolution of Pigmentation in Sticklebacks and Humans. Cell, 2007, 131, 1179-1189.	28.9	336
77	The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals. Science, 2007, 315, 1574-1576.	12.6	467
78	Character displacement of male nuptial colour in threespine sticklebacks (Gasterosteus aculeatus). Biological Journal of the Linnean Society, 2007, 91, 37-48.	1.6	34
79	Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 2007, 10, 315-331.	6.4	1,361
80	PARALLEL EVOLUTION BY CORRELATED RESPONSE: LATERAL PLATE REDUCTION IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2007, 61, 1084-1090.	2.3	92
81	THE GENETICS OF ADAPTIVE SHAPE SHIFT IN STICKLEBACK: PLEIOTROPY AND EFFECT SIZE. Evolution; International Journal of Organic Evolution, 2007, 62, 071115145922005-???.	2.3	233
82	Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 911-916.	2.6	82
83	Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles. Science, 2005, 307, 1928-1933.	12.6	1,299
84	PARALLEL EVOLUTION OF SEXUAL ISOLATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2005, 59, 361-373.	2.3	204
85	Selection and the origin of species. Current Biology, 2005, 15, R283-R288.	3.9	11
86	PARALLEL EVOLUTION OF SEXUAL ISOLATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2005, 59, 361.	2.3	19
87	CHARACTER SHIFTS IN THE DEFENSIVE ARMOR OF SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2004, 58, 376.	2.3	15
88	CHARACTER SHIFTS IN THE DEFENSIVE ARMOR OF SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2004, 58, 376-385.	2.3	73
89	Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 2004, 428, 717-723.	27.8	771
90	Evidence for ecology's role in speciation. Nature, 2004, 429, 294-298.	27.8	389

#	Article	IF	Citations
91	The Master Sex-Determination Locus in Threespine Sticklebacks Is on a Nascent Y Chromosome. Current Biology, 2004, 14, 1416-1424.	3.9	367
92	The Genetic Architecture of Parallel Armor Plate Reduction in Threespine Sticklebacks. PLoS Biology, 2004, 2, e109.	5 . 6	332
93	Parallel Evolution and Inheritance of Quantitative Traits. American Naturalist, 2004, 163, 809-822.	2.1	270
94	New Genomic Tools for Molecular Studies of Evolutionary Change in Threespine Sticklebacks. Behaviour, 2004, 141, 1331-1344.	0.8	64
95	Character shifts in the defensive armor of sympatric sticklebacks. Evolution; International Journal of Organic Evolution, 2004, 58, 376-85.	2.3	15
96	The effect of temporal scale on the outcome of trophic cascade experiments. Oecologia, 2003, 134, 578-586.	2.0	43
97	FREQUENCY DEPENDENT NATURAL SELECTION DURING CHARACTER DISPLACEMENT IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2003, 57, 1142-1150.	2.3	95
98	FREQUENCY DEPENDENT NATURAL SELECTION DURING CHARACTER DISPLACEMENT IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2003, 57, 1142.	2.3	7
99	Experimental test of predation's effect on divergent selection during character displacement in sticklebacks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14943-14948.	7.1	130
100	Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 923-930.	2.6	72
101	Ecology and the origin of species. Trends in Ecology and Evolution, 2001, 16, 372-380.	8.7	1,598
102	Limits to adaptation and patterns of biodiversity., 2001,, 77-101.		13
103	Investigating ecological speciation. , 2001, , 195-218.		5
104	Temporal patterns in diversification rates. , 2001, , 278-300.		16
105	The genetic architecture of divergence between threespine stickleback species. Nature, 2001, 414, 901-905.	27.8	479
106	Analysis of an evolutionary species–area relationship. Nature, 2000, 408, 847-850.	27.8	510
107	Ecological Character Displacement in Adaptive Radiation. American Naturalist, 2000, 156, S4-S16.	2.1	510
108	Natural Selection and Parallel Speciation in Sympatric Sticklebacks. Science, 2000, 287, 306-308.	12.6	647

#	Article	IF	Citations
109	Ecological Speciation in Sticklebacks: Environment-Dependent Hybrid Fitness. Evolution; International Journal of Organic Evolution, 1999, 53, 866.	2.3	178
110	Reconstructing Ancestor States with Maximum Likelihood: Support for One-and Two-Rate Models. Systematic Biology, 1999, 48, 623-633.	5.6	198
111	Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae). American Naturalist, 1999, 154, 249-259.	2.1	106
112	ECOLOGICAL SPECIATION IN STICKLEBACKS: ENVIRONMENT-DEPENDENT HYBRID FITNESS. Evolution; International Journal of Organic Evolution, 1999, 53, 866-873.	2.3	279
113	SEXUAL SELECTION AGAINST HYBRIDS BETWEEN SYMPATRIC STICKLEBACK SPECIES: EVIDENCE FROM A FIELD EXPERIMENT. Evolution; International Journal of Organic Evolution, 1999, 53, 874-879.	2.3	71
114	Reinforcement of Stickleback Mate Preferences: Sympatry Breeds Contempt. Evolution; International Journal of Organic Evolution, 1998, 52, 200.	2.3	119
115	Body Size, Natural Selection, and Speciation in Sticklebacks. Evolution; International Journal of Organic Evolution, 1998, 52, 209.	2.3	162
116	REINFORCEMENT OF STICKLEBACK MATE PREFERENCES: SYMPATRY BREEDS CONTEMPT. Evolution; International Journal of Organic Evolution, 1998, 52, 200-208.	2.3	149
117	BODY SIZE, NATURAL SELECTION, AND SPECIATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1998, 52, 209-218.	2.3	227
118	Fitting macroevolutionary models to phylogenies: an example using vertebrate body sizes. Contributions To Zoology, 1998, 68, 3-18.	0.5	23
119	THE RELATIONSHIP BETWEEN LOCAL AND REGIONAL DIVERSITY: REPLY. Ecology, 1998, 79, 1827-1829.	3.2	13
120	LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION. Evolution; International Journal of Organic Evolution, 1997, 51, 1699-1711.	2.3	775
121	THE RELATIONSHIP BETWEEN LOCAL AND REGIONAL DIVERSITY. Ecology, 1997, 78, 70-80.	3.2	376
122	Ecological Causes of Adaptive Radiation. American Naturalist, 1996, 148, S40-S64.	2.1	374
123	ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE. Evolution; International Journal of Organic Evolution, 1996, 50, 1766-1774.	2.3	729
124	A TEST FOR SEXUAL SELECTION ON HYBRIDS OF TWO SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1996, 50, 2429-2434.	2.3	43
125	Habitat Distributions of Wintering Sparrows: Foraging Success in a Transplant Experiment. Ecology, 1995, 77, 452-460.	3.2	5
126	Parallel Speciation by Natural Selection. American Naturalist, 1995, 146, 292-301.	2.1	411

#	Article	IF	CITATIONS
127	Uncertainty in ancient phylogenies. Nature, 1995, 377, 108-109.	27.8	97
128	Adaptive Radiation in Sticklebacks: Trade-Offs in Feeding Performance and Growth. Ecology, 1995, 76, 82-90.	3.2	356
129	The fitness of hybrids. Trends in Ecology and Evolution, 1995, 10, 288.	8.7	10
130	Evolutionary history of threespine sticklebacks (Gasterosteus spp.) in British Columbia: insights from a physiological clock. Canadian Journal of Zoology, 1995, 73, 2154-2158.	1.0	32
131	Experimental Evidence That Competition Promotes Divergence in Adaptive Radiation. Science, 1994, 266, 798-801.	12.6	440
132	A Comparison of Two Sticklebacks. Evolution; International Journal of Organic Evolution, 1994, 48, 1723.	2.3	96
133	Exploring Fitness Surfaces. American Naturalist, 1994, 143, 597-616.	2.1	285
134	Time, Condition, and the Seasonal Decline of Avian Clutch Size. American Naturalist, 1994, 143, 698-722.	2.1	293
135	A COMPARISON OF TWO STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1994, 48, 1723-1734.	2.3	149
136	Sexual selection when the female directly benefits. Biological Journal of the Linnean Society, 1993, 48, 187-211.	1.6	215
137	Character displacement and replicate adaptive radiation. Trends in Ecology and Evolution, 1993, 8, 197-200.	8.7	245
138	Adaptive Radiation in Sticklebacks: Size, Shape, and Habitat Use Efficiency. Ecology, 1993, 74, 699-709.	3.2	349
139	MATERNAL INHERITANCE OF CONDITION AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 1993, 47, 658-667.	2.3	83
140	Sexual selection when the female directly benefits. Biological Journal of the Linnean Society, 1993, 48, 187-211.	1.6	30
141	Ecological Character Displacement and Speciation in Sticklebacks. American Naturalist, 1992, 140, 85-108.	2.1	1,129
142	Brain size differences. Nature, 1992, 359, 181-181.	27.8	7
143	ON THE LOW HERITABILITY OF LIFE-HISTORY TRAITS. Evolution; International Journal of Organic Evolution, 1991, 45, 853-861.	2.3	299
144	Worldwide Limitation of Finch Densities by Food and Other Factors. Ecology, 1991, 72, 1763-1774.	3.2	44

#	Article	IF	Citations
145	Pattern and Process in Community Ecology: A Wiens'-Eye View. Ecology, 1990, 71, 2028-2029.	3.2	O
146	Species-for-Species Matching. American Naturalist, 1990, 136, 560-568.	2.1	40
147	Estimating the Form of Natural Selection on a Quantitative Trait. Evolution; International Journal of Organic Evolution, 1988, 42, 849.	2.3	329
148	The Evolution of Finch Communities on Islands and Continents: Kenya vs. Galapagos. Ecological Monographs, 1988, 58, 229-249.	5.4	65
149	ESTIMATING THE FORM OF NATURAL SELECTION ON A QUANTITATIVE TRAIT. Evolution; International Journal of Organic Evolution, 1988, 42, 849-861.	2.3	454
150	Character Displacement and the Adaptive Divergence of Finches on Islands and Continents. American Naturalist, 1988, 131, 799-824.	2.1	113
151	NATURAL SELECTION ON BEAK AND BODY SIZE IN THE SONG SPARROW. Evolution; International Journal of Organic Evolution, 1986, 40, 221-231.	2.3	115
152	Genetic and phenotypic correlations in a natural population of song sparrows. Biological Journal of the Linnean Society, 1986, 29, 23-36.	1.6	38
153	Tests for Similarity and Convergence of Finch Communities. Ecology, 1986, 67, 1073-1085.	3.2	86
154	Character Displacement between Distantly Related Taxa? Finches and Bees in the Galapagos. American Naturalist, 1986, 127, 95-102.	2.1	41
155	Feeding Correlates of Breeding and Social Organization in Two Galápagos Finches. Auk, 1984, 101, 59-68.	1.4	26
156	Determinants of Morphological Patterns in Communities of Darwin's Finches. American Naturalist, 1984, 123, 175-196.	2.1	253
157	A Variance Test for Detecting Species Associations, with Some Example Applications. Ecology, 1984, 65, 998-1005.	3.2	350
158	MORPHOLOGICAL AND PHYLOGENETIC RELATIONS AMONG THE DARWIN'S FINCHES. Evolution; International Journal of Organic Evolution, 1984, 38, 921-930.	2.3	73
159	Seed and Patch Selection by Galapagos Ground Finches: Relation to Foraging Efficiency and Food Supply. Ecology, 1982, 63, 1106-1120.	3.2	69
160	Distributions of Galapagos Ground Finches Along An Altitudinal Gradient: The Importance of Food Supply. Ecology, 1982, 63, 1504-1517.	3.2	56
161	Optimal Foraging in Bats: Some Comments. American Naturalist, 1982, 119, 121-125.	2.1	5
162	Does the Theory of Optimal Diets Apply in Complex Environments?. American Naturalist, 1981, 118, 139-147.	2.1	83