
Dolph Schluter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986982/publications.pdf Version: 2024-02-01

DOI DH SCHLUTER

#	Article	IF	CITATIONS
1	Adaptation from standing genetic variation. Trends in Ecology and Evolution, 2008, 23, 38-44.	8.7	1,707
2	Ecology and the origin of species. Trends in Ecology and Evolution, 2001, 16, 372-380.	8.7	1,598
3	Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 2007, 10, 315-331.	6.4	1,361
4	Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles. Science, 2005, 307, 1928-1933.	12.6	1,299
5	Evidence for Ecological Speciation and Its Alternative. Science, 2009, 323, 737-741.	12.6	1,243
6	Ecological Character Displacement and Speciation in Sticklebacks. American Naturalist, 1992, 140, 85-108.	2.1	1,129
7	Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a <i>Pitx1</i> Enhancer. Science, 2010, 327, 302-305.	12.6	901
8	LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION. Evolution; International Journal of Organic Evolution, 1997, 51, 1699-1711.	2.3	775
9	Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 2004, 428, 717-723.	27.8	771
10	ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE. Evolution; International Journal of Organic Evolution, 1996, 50, 1766-1774.	2.3	729
11	Does evolutionary theory need a rethink?. Nature, 2014, 514, 161-164.	27.8	727
12	EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	672
13	Natural Selection and Parallel Speciation in Sympatric Sticklebacks. Science, 2000, 287, 306-308.	12.6	647
14	Genetics and ecological speciation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9955-9962.	7.1	511
15	Analysis of an evolutionary species–area relationship. Nature, 2000, 408, 847-850.	27.8	510
16	Ecological Character Displacement in Adaptive Radiation. American Naturalist, 2000, 156, S4-S16.	2.1	510
17	The genetic architecture of divergence between threespine stickleback species. Nature, 2001, 414, 901-905.	27.8	479
18	The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals. Science, 2007, 315, 1574-1576.	12.6	467

#	Article	IF	CITATIONS
19	ESTIMATING THE FORM OF NATURAL SELECTION ON A QUANTITATIVE TRAIT. Evolution; International Journal of Organic Evolution, 1988, 42, 849-861.	2.3	454
20	Experimental Evidence That Competition Promotes Divergence in Adaptive Radiation. Science, 1994, 266, 798-801.	12.6	440
21	Parallel Speciation by Natural Selection. American Naturalist, 1995, 146, 292-301.	2.1	411
22	Evidence for ecology's role in speciation. Nature, 2004, 429, 294-298.	27.8	389
23	THE RELATIONSHIP BETWEEN LOCAL AND REGIONAL DIVERSITY. Ecology, 1997, 78, 70-80.	3.2	376
24	Ecological Causes of Adaptive Radiation. American Naturalist, 1996, 148, S40-S64.	2.1	374
25	The probability of genetic parallelism and convergence in natural populations. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 5039-5047.	2.6	372
26	The Master Sex-Determination Locus in Threespine Sticklebacks Is on a Nascent Y Chromosome. Current Biology, 2004, 14, 1416-1424.	3.9	367
27	Adaptive Radiation in Sticklebacks: Trade-Offs in Feeding Performance and Growth. Ecology, 1995, 76, 82-90.	3.2	356
28	A Variance Test for Detecting Species Associations, with Some Example Applications. Ecology, 1984, 65, 998-1005.	3.2	350
29	Adaptive Radiation in Sticklebacks: Size, Shape, and Habitat Use Efficiency. Ecology, 1993, 74, 699-709.	3.2	349
30	Natural Selection on a Major Armor Gene in Threespine Stickleback. Science, 2008, 322, 255-257.	12.6	341
31	cis-Regulatory Changes in Kit Ligand Expression and Parallel Evolution of Pigmentation in Sticklebacks and Humans. Cell, 2007, 131, 1179-1189.	28.9	336
32	The Genetic Architecture of Parallel Armor Plate Reduction in Threespine Sticklebacks. PLoS Biology, 2004, 2, e109.	5.6	332
33	Estimating the Form of Natural Selection on a Quantitative Trait. Evolution; International Journal of Organic Evolution, 1988, 42, 849.	2.3	329
34	Evolutionary diversification in stickleback affects ecosystem functioning. Nature, 2009, 458, 1167-1170.	27.8	309
35	ON THE LOW HERITABILITY OF LIFE-HISTORY TRAITS. Evolution; International Journal of Organic Evolution, 1991, 45, 853-861.	2.3	299
36	Time, Condition, and the Seasonal Decline of Avian Clutch Size. American Naturalist, 1994, 143, 698-722.	2.1	293

#	Article	IF	CITATIONS
37	Exploring Fitness Surfaces. American Naturalist, 1994, 143, 597-616.	2.1	285
38	ECOLOGICAL SPECIATION IN STICKLEBACKS: ENVIRONMENT-DEPENDENT HYBRID FITNESS. Evolution; International Journal of Organic Evolution, 1999, 53, 866-873.	2.3	279
39	Parallel Evolution and Inheritance of Quantitative Traits. American Naturalist, 2004, 163, 809-822.	2.1	270
40	The genes underlying the process of speciation. Trends in Ecology and Evolution, 2011, 26, 160-167.	8.7	268
41	Genetics of ecological divergence during speciation. Nature, 2014, 511, 307-311.	27.8	264
42	Determinants of Morphological Patterns in Communities of Darwin's Finches. American Naturalist, 1984, 123, 175-196.	2.1	253
43	Character displacement and replicate adaptive radiation. Trends in Ecology and Evolution, 1993, 8, 197-200.	8.7	245
44	THE GENETICS OF ADAPTIVE SHAPE SHIFT IN STICKLEBACK: PLEIOTROPY AND EFFECT SIZE. Evolution; International Journal of Organic Evolution, 2007, 62, 071115145922005-???.	2.3	233
45	BODY SIZE, NATURAL SELECTION, AND SPECIATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1998, 52, 209-218.	2.3	227
46	Sexual selection when the female directly benefits. Biological Journal of the Linnean Society, 1993, 48, 187-211.	1.6	215
47	A Genome-wide SNP Genotyping Array Reveals Patterns of Global and Repeated Species-Pair Divergence in Sticklebacks. Current Biology, 2012, 22, 83-90.	3.9	212
48	Speciation gradients and the distribution of biodiversity. Nature, 2017, 546, 48-55.	27.8	212
49	PARALLEL EVOLUTION OF SEXUAL ISOLATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2005, 59, 361-373.	2.3	204
50	Reconstructing Ancestor States with Maximum Likelihood: Support for One-and Two-Rate Models. Systematic Biology, 1999, 48, 623-633.	5.6	198
51	Ecological Speciation in Sticklebacks: Environment-Dependent Hybrid Fitness. Evolution; International Journal of Organic Evolution, 1999, 53, 866.	2.3	178
52	Body Size, Natural Selection, and Speciation in Sticklebacks. Evolution; International Journal of Organic Evolution, 1998, 52, 209.	2.3	162
53	DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science, 2019, 363, 81-84.	12.6	162
54	A COMPARISON OF TWO STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1994, 48, 1723-1734.	2.3	149

#	Article	IF	CITATIONS
55	REINFORCEMENT OF STICKLEBACK MATE PREFERENCES: SYMPATRY BREEDS CONTEMPT. Evolution; International Journal of Organic Evolution, 1998, 52, 200-208.	2.3	149
56	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146
57	The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21737-21742.	7.1	134
58	Speciation, Ecological Opportunity, and Latitude. American Naturalist, 2016, 187, 1-18.	2.1	132
59	Experimental test of predation's effect on divergent selection during character displacement in sticklebacks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14943-14948.	7.1	130
60	Rapid evolution of cold tolerance in stickleback. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 233-238.	2.6	129
61	Modular Skeletal Evolution in Sticklebacks Is Controlled by Additive and Clustered Quantitative Trait Loci. Genetics, 2014, 197, 405-420.	2.9	122
62	Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Molecular Ecology, 2017, 26, 4378-4390.	3.9	121
63	Reinforcement of Stickleback Mate Preferences: Sympatry Breeds Contempt. Evolution; International Journal of Organic Evolution, 1998, 52, 200.	2.3	119
64	NATURAL SELECTION ON BEAK AND BODY SIZE IN THE SONG SPARROW. Evolution; International Journal of Organic Evolution, 1986, 40, 221-231.	2.3	115
65	Character Displacement and the Adaptive Divergence of Finches on Islands and Continents. American Naturalist, 1988, 131, 799-824.	2.1	113
66	Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae). American Naturalist, 1999, 154, 249-259.	2.1	106
67	Uncertainty in ancient phylogenies. Nature, 1995, 377, 108-109.	27.8	97
68	A Comparison of Two Sticklebacks. Evolution; International Journal of Organic Evolution, 1994, 48, 1723.	2.3	96
69	FREQUENCY DEPENDENT NATURAL SELECTION DURING CHARACTER DISPLACEMENT IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2003, 57, 1142-1150.	2.3	95
70	Niche Specialization Influences Adaptive Phenotypic Plasticity in the Threespine Stickleback. American Naturalist, 2012, 180, 50-59.	2.1	94
71	PARALLEL EVOLUTION BY CORRELATED RESPONSE: LATERAL PLATE REDUCTION IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2007, 61, 1084-1090.	2.3	92
72	The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology and Evolution, 2018, 2, 459-464.	7.8	91

#	Article	IF	CITATIONS
73	Parallel genetic evolution and speciation from standing variation. Evolution Letters, 2019, 3, 129-141.	3.3	87
74	Tests for Similarity and Convergence of Finch Communities. Ecology, 1986, 67, 1073-1085.	3.2	86
75	Does the Theory of Optimal Diets Apply in Complex Environments?. American Naturalist, 1981, 118, 139-147.	2.1	83
76	MATERNAL INHERITANCE OF CONDITION AND CLUTCH SIZE IN THE COLLARED FLYCATCHER. Evolution; International Journal of Organic Evolution, 1993, 47, 658-667.	2.3	83
77	Evolved tooth gain in sticklebacks is associated with a <i>cis</i> -regulatory allele of <i>Bmp6</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13912-13917.	7.1	83
78	Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 911-916.	2.6	82
79	GENETIC SIGNATURE OF ADAPTIVE PEAK SHIFT IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 2439-2450.	2.3	75
80	ENVIRONMENT SPECIFIC PLEIOTROPY FACILITATES DIVERGENCE AT THE <i>ECTODYSPLASIN</i> LOCUS IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2009, 63, 2831-2837.	2.3	74
81	MORPHOLOGICAL AND PHYLOGENETIC RELATIONS AMONG THE DARWIN'S FINCHES. Evolution; International Journal of Organic Evolution, 1984, 38, 921-930.	2.3	73
82	CHARACTER SHIFTS IN THE DEFENSIVE ARMOR OF SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2004, 58, 376-385.	2.3	73
83	Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 923-930.	2.6	72
84	SEXUAL SELECTION AGAINST HYBRIDS BETWEEN SYMPATRIC STICKLEBACK SPECIES: EVIDENCE FROM A FIELD EXPERIMENT. Evolution; International Journal of Organic Evolution, 1999, 53, 874-879.	2.3	71
85	Seed and Patch Selection by Galapagos Ground Finches: Relation to Foraging Efficiency and Food Supply. Ecology, 1982, 63, 1106-1120.	3.2	69
86	Natural selection and the genetics of adaptation in threespine stickleback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2479-2486.	4.0	69
87	INTRAGUILD PREDATION DRIVES EVOLUTIONARY NICHE SHIFT IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 1819-1832.	2.3	68
88	The Evolution of Finch Communities on Islands and Continents: Kenya vs. Galapagos. Ecological Monographs, 1988, 58, 229-249.	5.4	65
89	New Genomic Tools for Molecular Studies of Evolutionary Change in Threespine Sticklebacks. Behaviour, 2004, 141, 1331-1344.	0.8	64
90	Advances in <scp>E</scp> cological <scp>S</scp> peciation: an integrative approach. Molecular Ecology, 2014, 23, 513-521.	3.9	63

#	Article	IF	CITATIONS
91	Moving Character Displacement beyond Characters Using Contemporary Coexistence Theory. Trends in Ecology and Evolution, 2018, 33, 74-84.	8.7	63
92	Speciation and the City. Trends in Ecology and Evolution, 2018, 33, 815-826.	8.7	62
93	Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback. Genetics, 2015, 201, 1189-1200.	2.9	61
94	Ecological Impacts of Reverse Speciation in Threespine Stickleback. Current Biology, 2016, 26, 490-495.	3.9	61
95	Distributions of Galapagos Ground Finches Along An Altitudinal Gradient: The Importance of Food Supply. Ecology, 1982, 63, 1504-1517.	3.2	56
96	Strong and consistent natural selection associated with armour reduction in sticklebacks. Molecular Ecology, 2011, 20, 2483-2493.	3.9	56
97	Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation. Current Biology, 2017, 27, 3344-3349.e4.	3.9	56
98	Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends in Ecology and Evolution, 2017, 32, 403-415.	8.7	54
99	Do riparian zones qualify as critical habitat for endangered freshwater fishes?. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1197-1204.	1.4	50
100	Patterns, Predictors, and Consequences of Dominance in Hybrids. American Naturalist, 2021, 197, E72-E88.	2.1	45
101	Fitness maps to a large-effect locus in introduced stickleback populations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
102	Worldwide Limitation of Finch Densities by Food and Other Factors. Ecology, 1991, 72, 1763-1774.	3.2	44
103	A TEST FOR SEXUAL SELECTION ON HYBRIDS OF TWO SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 1996, 50, 2429-2434.	2.3	43
104	The effect of temporal scale on the outcome of trophic cascade experiments. Oecologia, 2003, 134, 578-586.	2.0	43
105	Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. Ecography, 2019, 42, 1832-1840.	4.5	43
106	Rapid adaptive evolution of colour vision in the threespine stickleback radiation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160242.	2.6	42
107	Parallel changes in gut microbiome composition and function during colonization, local adaptation and ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191911.	2.6	41
108	Character Displacement between Distantly Related Taxa? Finches and Bees in the Galapagos. American Naturalist, 1986, 127, 95-102.	2.1	41

#	Article	IF	CITATIONS
109	EXPERIMENTAL CONFIRMATION THAT BODY SIZE DETERMINES MATE PREFERENCE VIA PHENOTYPE MATCHING IN A STICKLEBACK SPECIES PAIR. Evolution; International Journal of Organic Evolution, 2013, 67, no-no.	2.3	40
110	Species-for-Species Matching. American Naturalist, 1990, 136, 560-568.	2.1	40
111	Genetic and phenotypic correlations in a natural population of song sparrows. Biological Journal of the Linnean Society, 1986, 29, 23-36.	1.6	38
112	Ecological and Evolutionary Effects of Stickleback on Community Structure. PLoS ONE, 2013, 8, e59644.	2.5	37
113	Colour plasticity and background matching in a threespine stickleback species pair. Biological Journal of the Linnean Society, 2011, 102, 902-914.	1.6	35
114	Character displacement of male nuptial colour in threespine sticklebacks (Gasterosteus aculeatus). Biological Journal of the Linnean Society, 2007, 91, 37-48.	1.6	34
115	Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds. Evolution; International Journal of Organic Evolution, 2017, 71, 2230-2242.	2.3	34
116	Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks. Evolution; International Journal of Organic Evolution, 2016, 70, 887-902.	2.3	33
117	A Single Interacting Species Leads to Widespread Parallel Evolution of the Stickleback Genome. Current Biology, 2019, 29, 530-537.e6.	3.9	33
118	Evolutionary history of threespine sticklebacks (Gasterosteus spp.) in British Columbia: insights from a physiological clock. Canadian Journal of Zoology, 1995, 73, 2154-2158.	1.0	32
119	Cline coupling and uncoupling in a stickleback hybrid zone. Evolution; International Journal of Organic Evolution, 2016, 70, 1023-1038.	2.3	31
120	On the Origin of Coexisting Species. Trends in Ecology and Evolution, 2021, 36, 284-293.	8.7	31
121	Three problems in the genetics of speciation by selection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	31
122	Sexual selection when the female directly benefits. Biological Journal of the Linnean Society, 1993, 48, 187-211.	1.6	30
123	Parallel introgression and selection on introduced alleles in a native species. Molecular Ecology, 2019, 28, 2802-2813.	3.9	29
124	Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biology, 2022, 20, e3001469.	5.6	29
125	Discriminating Selection on Lateral Plate Phenotype and Its Underlying Gene, <i>Ectodysplasin</i> , in Threespine Stickleback. American Naturalist, 2015, 185, 150-156.	2.1	28
126	Feeding Correlates of Breeding and Social Organization in Two Galápagos Finches. Auk, 1984, 101, 59-68.	1.4	26

#	Article	IF	CITATIONS
127	Reversed brain size sexual dimorphism accompanies loss of parental care in white sticklebacks. Ecology and Evolution, 2014, 4, 3236-3243.	1.9	26
128	Fitting macroevolutionary models to phylogenies: an example using vertebrate body sizes. Contributions To Zoology, 1998, 68, 3-18.	0.5	23
129	Intraguild predation leads to genetically based character shifts in the threespine stickleback. Evolution; International Journal of Organic Evolution, 2015, 69, 3194-3203.	2.3	23
130	PARALLEL EVOLUTION OF SEXUAL ISOLATION IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2005, 59, 361.	2.3	19
131	Maintenance of a Genetic Polymorphism with Disruptive Natural Selection in Stickleback. Current Biology, 2014, 24, 1289-1292.	3.9	19
132	Pelagic fish predation is stronger at temperate latitudes than near the equator. Nature Communications, 2020, 11, 1527.	12.8	18
133	Genetics of adaptation: Experimental test of a biotic mechanism driving divergence in traits and genes. Evolution Letters, 2019, 3, 513-520.	3.3	17
134	Adaptation and Latitudinal Gradients in Species Interactions: Nest Predation in Birds. American Naturalist, 2020, 196, E160-E166.	2.1	17
135	Temporal patterns in diversification rates. , 2001, , 278-300.		16
136	CHARACTER SHIFTS IN THE DEFENSIVE ARMOR OF SYMPATRIC STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2004, 58, 376.	2.3	15
137	Piscivore addition causes a trophic cascade within and across ecosystem boundaries. Oikos, 2016, 125, 1782-1789.	2.7	15
138	Character shifts in the defensive armor of sympatric sticklebacks. Evolution; International Journal of Organic Evolution, 2004, 58, 376-85.	2.3	15
139	The temporal window of ecological adaptation in postglacial lakes: a comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations. BMC Evolutionary Biology, 2016, 16, 102.	3.2	14
140	THE RELATIONSHIP BETWEEN LOCAL AND REGIONAL DIVERSITY: REPLY. Ecology, 1998, 79, 1827-1829.	3.2	13
141	Limits to adaptation and patterns of biodiversity. , 2001, , 77-101.		13
142	Vulnerability to Fishing and Life History Traits Correlate with the Load of Deleterious Mutations in Teleosts. Molecular Biology and Evolution, 2020, 37, 2192-2196.	8.9	12
143	Selection and the origin of species. Current Biology, 2005, 15, R283-R288.	3.9	11
144	Are rates of molecular evolution in mammals substantially accelerated in warmer environments?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1291-1293.	2.6	11

#	ARTICLE	IF	CITATIONS
145	Faster evolution of a premating reproductive barrier is not associated with faster speciation rates in New World passerine birds. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211514.	2.6	11
146	Savannas are vital but overlooked carbon sinks. Science, 2022, 375, 392-392.	12.6	11
147	The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecology Letters, 2022, 25, 635-646.	6.4	11
148	The fitness of hybrids. Trends in Ecology and Evolution, 1995, 10, 288.	8.7	10
149	Resource Competition and Coevolution in Sticklebacks. Evolution: Education and Outreach, 2010, 3, 54-61.	0.8	10
150	Weak habitat isolation in a threespine stickleback (Gasterosteusspp.) species pair. Biological Journal of the Linnean Society, 2013, 110, 466-476.	1.6	9
151	Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evolution Letters, 2022, 6, 34-45.	3.3	9
152	Brain size differences. Nature, 1992, 359, 181-181.	27.8	7
153	FREQUENCY DEPENDENT NATURAL SELECTION DURING CHARACTER DISPLACEMENT IN STICKLEBACKS. Evolution; International Journal of Organic Evolution, 2003, 57, 1142.	2.3	7
154	Incomplete reproductive isolation and strong transcriptomic response to hybridization between sympatric sister species of salmon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203020.	2.6	6
155	Habitat Distributions of Wintering Sparrows: Foraging Success in a Transplant Experiment. Ecology, 1995, 77, 452-460.	3.2	5
156	Investigating ecological speciation. , 2001, , 195-218.		5
157	Optimal Foraging in Bats: Some Comments. American Naturalist, 1982, 119, 121-125.	2.1	5
158	Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220422.	2.6	5
159	Pharmacological evidence that DAPI inhibits NHE2 in Fundulus heteroclitus acclimated to freshwater. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 211, 1-6.	2.6	3
160	A test of frequencyâ€dependent selection in the evolution of a generalist phenotype. Ecology and Evolution, 2022, 12, e8831.	1.9	1
161	Pattern and Process in Community Ecology: A Wiens'-Eye View. Ecology, 1990, 71, 2028-2029.	3.2	0
162	Losos' lizards. Trends in Ecology and Evolution, 2010, 25, 322.	8.7	0