
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy and Environmental Science, 2015, 8, 2734-2743.	30.8	146
2	Uranyl Ion Complexes with Cucurbit[<i>n</i>]urils (<i>n</i> = 6, 7, and 8): A New Family of Uranyl-Organic Frameworks. Crystal Growth and Design, 2008, 8, 4132-4143.	3.0	118
3	Lanthanide(III)/Actinide(III) Differentiation in the Cerium and Uranium Complexes [M(C5Me5)2(L)]0,+ (L=2,2′-Bipyridine, 2,2′:6′,2′′-Terpyridine): Structural, Magnetic, and Reactivity Studies. Chemistry European Journal, 2005, 11, 6994-7006.	• A 3.3	101
4	U(SMes*)n, (n= 3, 4) and Ln(SMes*)3(Ln = La, Ce, Pr, Nd):Â Lanthanide(III)/Actinide(III) Differentiation in Agostic Interactions and an Unprecedented η3Ligation Mode of the Arylthiolate Ligand, from X-ray Diffraction and DFT Analysis. Journal of the American Chemical Society, 2006, 128, 8790-8802.	13.7	96
5	Easy access to stable pentavalent uranyl complexes. Chemical Communications, 2006, , 3184-3186.	4.1	92
6	Synthesis and crystal structure of pentavalent uranyl complexes. The remarkable stability of UO2X (X) Tj ETQq0 C) OʻrgBT /C	verlock 10 Ti
7	Uranyl-Lanthanide Heterometallic Complexes with Cucurbit[6]uril and Perrhenate Ligands. Inorganic Chemistry, 2009, 48, 825-827.	4.0	88
8	Uranyl-Based Metallamacrocycles:  Tri- and Tetranuclear Complexes with (2R,3R,4S,5S)-Tetrahydrofurantetracarboxylic Acid. Journal of the American Chemical Society, 2004, 126, 6838-6839.	13.7	87
9	Uranyl complexes with the pyridine-2,6-dicarboxylato ligand: new dinuclear species with μ-η2,η2-peroxide, μ2-hydroxide or μ2-methoxide bridges. Polyhedron, 2005, 24, 229-237.	2.2	85
10	Solid-State Luminescence and ï€-Stacking in Crystalline Uranyl Dipicolinates. European Journal of Inorganic Chemistry, 2006, 2006, 389-396.	2.0	84
11	Recent advances in structural studies of heterometallic uranyl-containing coordination polymers and polynuclear closed species. Dalton Transactions, 2017, 46, 13660-13667.	3.3	84
12	2,2′â€Bipyrimidine as Efficient Sensitizer of the Solidâ€State Luminescence of Lanthanide and Uranyl Ions from Visible to Nearâ€Infrared. Chemistry - A European Journal, 2009, 15, 9686-9696.	3.3	83
13	Uranyl ion complexation by citric and tricarballylic acids: hydrothermal synthesis and structure of two- and three-dimensional uranium–organic frameworks. Chemical Communications, 2006, , 853.	4.1	78
14	Lanthanide Complexes with Cucurbit[<i>n</i>]urils (<i>n</i> = 5, 6, 7) and Perrhenate Ligands: New Examples of Encapsulation of Perrhenate Anions. Inorganic Chemistry, 2009, 48, 4497-4513.	4.0	77
15	Reaction of uranyl nitrate with carboxylic diacids under hydrothermal conditions. Crystal structure of complexes with l(+)-tartaric and oxalic acids. Polyhedron, 2007, 26, 101-106.	2.2	75
16	Pyrazinetetracarboxylic Acid as an Assembler Ligand in Uranylâ^'Organic Frameworks. Crystal Growth and Design, 2008, 8, 1689-1696.	3.0	75
17	Uranyl–Organic Frameworks with Polycarboxylates: Unusual Effects of a Coordinating Solvent. Crystal Growth and Design, 2014, 14, 1314-1323.	3.0	73
18	Structural Variations in the Uranyl/4,4′-Biphenyldicarboxylate System. Rare Examples of 2D → 3D Polycatenated Uranyl–Organic Networks. Inorganic Chemistry, 2015, 54, 8093-8102.	4.0	73

#	Article	IF	CITATIONS
19	Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Polycarboxylic Acids. Novel Mixed-Ligand Uranylâ^'Organic Frameworks. Crystal Growth and Design, 2010, 10, 716-725.	3.0	72
20	Complexation of a hexameric uranium(VI) cluster by p-benzylcalix[7]arene. Journal of the Chemical Society Dalton Transactions, 1999, , 2589-2594.	1.1	70
21	Uranylâ^'Organic Frameworks with 1,2,3,4-Butanetetracarboxylate and 1,2,3,4-Cyclobutanetetracarboxylate Ligands. Crystal Growth and Design, 2008, 8, 3430-3436.	3.0	70
22	Unprecedented reduction of the uranyl ion [UO2]2+ into a polyoxo uranium(iv) cluster: Synthesis and crystal structure of the first f-element oxide with a M6(µ3-O)8 core. Chemical Communications, 2005, , 3415.	4.1	67
23	Sulfonate Complexes of Actinide Ions: Structural Diversity in Uranyl Complexes with 2-Sulfobenzoate. Inorganic Chemistry, 2013, 52, 435-447.	4.0	67
24	Uranyl and Uranyl–3d Block Cation Complexes with 1,3-Adamantanedicarboxylate: Crystal Structures, Luminescence, and Magnetic Properties. Inorganic Chemistry, 2015, 54, 2838-2850.	4.0	63
25	<scp>l</scp> -Cysteine as a Chiral Linker in Lanthanide–Cucurbit[6]uril One-Dimensional Assemblies. Inorganic Chemistry, 2011, 50, 10558-10560.	4.0	62
26	Uranyl Ion Complexation by Citric and Citramalic Acids in the Presence of Diamines. Inorganic Chemistry, 2007, 46, 2307-2315.	4.0	60
27	Metal-free dehydrogenation of formic acid to H ₂ and CO ₂ using boron-based catalysts. Chemical Science, 2015, 6, 2938-2942.	7.4	60
28	Uranyl ion complexes of cucurbit[7]uril with zero-, one- and two-dimensionality. CrystEngComm, 2009, 11, 1150.	2.6	58
29	New Efficient Synthesis of [UI4(MeCN)4]. X-ray Crystal Structures of [UI2(MeCN)7][UI6], [UI4(py)3], and [U(dmf)9]I4. Inorganic Chemistry, 2005, 44, 1142-1146.	4.0	56
30	2,2′â€Bipyridine and 1,10â€Phenanthroline as Coligands or Structureâ€Directing Agents in Uranyl–Organic Assemblies with Polycarboxylic Acids. European Journal of Inorganic Chemistry, 2013, 2013, 4563-4573.	2.0	55
31	Two uranyl–organic frameworks with pyridinecarboxylate ligands. A novel heterometallic uranyl–copper(II) complex with a cation–cation interaction. Inorganic Chemistry Communication, 2009, 12, 800-803.	3.9	54
32	Structural Consequences of 1,4-Cyclohexanedicarboxylate Cis/Trans Isomerism in Uranyl Ion Complexes: From Molecular Species to 2D and 3D Entangled Nets. Inorganic Chemistry, 2017, 56, 13464-13481.	4.0	54
33	Self-assembly of an Octa-uranate Cage Complex with a Rigid bis-Catechol Ligand. Supramolecular Chemistry, 2003, 15, 95-99.	1.2	52
34	Hydrothermal synthesis of uranyl–organic frameworks with pyrazine-2,3-dicarboxylate linkers. CrystEngComm, 2008, 10, 1082.	2.6	52
35	Uranyl–organic bilayer assemblies with flexible aromatic di-, tri- and tetracarboxylic acids. CrystEngComm, 2009, 11, 1081.	2.6	52
36	Uranyl Ion Complexes with all- <i>cis</i> -1,3,5-Cyclohexanetricarboxylate: Unexpected Framework and Nanotubular Assemblies. Crystal Growth and Design, 2014, 14, 4214-4225.	3.0	52

#	Article	IF	CITATIONS
37	A Lanthanide Ion-Decorated Uranylâ^'Organic Two-Dimensional Assembly with all-cis 1,2,3,4,5,6-Cyclohexanehexacarboxylic Acid. Crystal Growth and Design, 2010, 10, 2061-2063.	3.0	51
38	Uranyl–organic one- and two-dimensional assemblies with 2,2′-bipyridine-3,3′-dicarboxylic, biphenyl-3,3′,4,4′-tetracarboxylic and bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acids. CrystEngComm, 2012, 14, 131-137.	2.6	50
39	A metal-organic molecular box obtained from self-assembling around uranyl ions. Journal of the Chemical Society Dalton Transactions, 1999, , 1047-1048.	1.1	48
40	Synthesis and crystal structure of 1:2 mixed uranyl/alkali metal ions (Li+, Na+, K+, Cs+) complexes of p-tert-butyltetrahomodioxacalix[4]arene. Dalton Transactions, 2003, , 2411-2417.	3.3	48
41	Uranyl Ion Complexes with Ammoniobenzoates as Assemblers for Cucurbit[6]uril Molecules. Crystal Growth and Design, 2012, 12, 499-507.	3.0	48
42	A Highly Adjustable Coordination System: Nanotubular and Molecular Cage Species in Uranyl Ion Complexes with Kemp's Triacid. Crystal Growth and Design, 2014, 14, 901-904.	3.0	48
43	Extension of the Bambus[<i>n</i>]uril Family: Microwave Synthesis and Reactivity of Allylbambus[<i>n</i>]urils. Organic Letters, 2013, 15, 480-483.	4.6	47
44	Increasing Complexity in the Uranyl Ion–Kemp's Triacid System: From One- and Two-Dimensional Polymers to Uranyl–Copper(II) Dodeca- and Hexadecanuclear Species. Crystal Growth and Design, 2014, 14, 2665-2676.	3.0	47
45	A Nanosized Uranyl Camphorate Cage and its Use as a Building Unit in a Metalâ^Organic Framework. Crystal Growth and Design, 2009, 9, 4592-4594.	3.0	46
46	Second-Sphere Tethering of Rare-Earth Ions to Cucurbit[6]uril by Iminodiacetic Acid Involving Carboxylic Group Encapsulation. Inorganic Chemistry, 2010, 49, 9078-9085.	4.0	45
47	Chiral one- to three-dimensional uranyl–organic assemblies from (1R,3S)-(+)-camphoric acid. CrystEngComm, 2014, 16, 2996.	2.6	45
48	Crystal structure of the first octanuclear uranium(IV) complex with compartmental Schiff base ligands. Polyhedron, 2004, 23, 623-627.	2.2	44
49	Uranyl–copper(ii) heterometallic oxalate complexes: coordination polymers and frameworks. Dalton Transactions, 2013, 42, 10551.	3.3	44
50	Novel two-dimensional uranyl–organic assemblages in the citrate and <scp>d</scp> (–)-citramalate families. CrystEngComm, 2008, 10, 79-85.	2.6	43
51	Sydnone-Based Approach to Heterohelicenes through 1,3-Dipolar-Cycloadditions. Journal of the American Chemical Society, 2019, 141, 1435-1440.	13.7	43
52	Uranium and Lanthanide Complexes with the 2-Mercapto Benzothiazolate Ligand: Evidence for a Specific Covalent Binding Site in the Differentiation of Isostructural Lanthanide(III) and Actinide(III) Compounds. Organometallics, 2008, 27, 33-42.	2.3	42
53	Structural variability in uranyl–lanthanide heterometallic complexes with DOTA and oxalato ligands. CrystEngComm, 2009, 11, 2319.	2.6	42
54	Solid State Structure of Thorium(IV) Complexes with Common Aminopolycarboxylate Ligands. Inorganic Chemistry, 2011, 50, 1898-1904.	4.0	42

#	Article	IF	CITATIONS
55	Modulation of the Structure and Properties of Uranyl Ion Coordination Polymers Derived from 1,3,5-Benzenetriacetate by Incorporation of Ag(I) or Pb(II). Inorganic Chemistry, 2016, 55, 6799-6816.	4.0	42
56	Two uranyl-organic frameworks with formic acid. A novel example of a uranyl-based nanotubular assemblage. Inorganic Chemistry Communication, 2008, 11, 616-620.	3.9	41
57	An unprecedented trigonal coordination geometry for the uranyl ion in its complex with p-tert-butylhexahomotrioxacalix[3]arene. Journal of the Chemical Society Dalton Transactions, 1999, , 3151-3152.	1.1	40
58	Uranyl–lanthanide heterometallic assemblies with 1,2-ethanedisulfonate and cucurbit[6]uril ligands. CrystEngComm, 2012, 14, 3363.	2.6	40
59	Lanthanide Ion Complexes with 2-, 3-, or 4-Sulfobenzoate and Cucurbit[6]uril. Crystal Growth and Design, 2012, 12, 1632-1640.	3.0	40
60	Counterion-Induced Variations in the Dimensionality and Topology of Uranyl Pimelate Complexes. Crystal Growth and Design, 2016, 16, 2826-2835.	3.0	40
61	Solvothermal Synthesis and Crystal Structure of Uranyl Complexes with 1,1-Cyclobutanedicarboxylic and (1R,3S)-(+)-Camphoric Acids – Novel Chiral Uranyl-Organic Frameworks. European Journal of Inorganic Chemistry, 2006, 2006, 3646-3651.	2.0	39
62	The first uranyl–lanthanide heterometallic complexes: metal–organic frameworks with DOTA and oxalato ligands. CrystEngComm, 2008, 10, 1126.	2.6	39
63	Ag ^I and Pb ^{II} as Additional Assembling Cations in Uranyl Coordination Polymers and Frameworks. Crystal Growth and Design, 2017, 17, 2116-2130.	3.0	39
64	Two novel uranyl–organic frameworks with cyclohexane-1,3-dicarboxylate ligands. CrystEngComm, 2009, 11, 232-234.	2.6	37
65	Coordination Polymers and Cage-Containing Frameworks in Uranyl Ion Complexes with <i>rac</i> and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylates: Consequences of Chirality. Inorganic Chemistry, 2017, 56, 1455-1469.	4.0	37
66	Uranyl Ion Complexes with 1,1′-Biphenyl-2,2′,6,6′-tetracarboxylic Acid: Structural and Spectroscopic Studies of One- to Three-Dimensional Assemblies. Inorganic Chemistry, 2015, 54, 6296-6305.	4.0	36
67	Anchoring flexible uranyl dicarboxylate chains through stacking interactions of ancillary ligands on chiral U(<scp>vi</scp>) centres. CrystEngComm, 2016, 18, 3905-3918.	2.6	36
68	Formation of Uranium(IV) Oxide Clusters from Uranocene [U(η ⁸ -C ₈ H ₈) ₂] and Uranyl [UO ₂ X ₂] Compounds. Inorganic Chemistry, 2010, 49, 8173-8177.	4.0	35
69	[Ni(cyclam)] ²⁺ and [Ni(<i>R</i> , <i>S</i> -Me ₆ cyclam)] ²⁺ as Linkers or Counterions In Uranyl–Organic Species with <i>cis</i> - and <i>trans</i> -1,2-Cyclohexanedicarboxylate Ligands. Crystal Growth and Design, 2018, 18, 5512-5520.	3.0	35
70	Uranyl–3d block metal ion heterometallic carboxylate complexes including additional chelating nitrogen donors. CrystEngComm, 2013, 15, 6533.	2.6	34
71	Complexation of Uranyl and Rare-Earth Ions by a Fluorinated Tetracarboxylate. Formation of a Layered Assembly and Three-Dimensional Frameworks. Crystal Growth and Design, 2013, 13, 3216-3224.	3.0	34
72	Counter-ion control of structure in uranyl ion complexes with 2,5-thiophenedicarboxylate. CrystEngComm, 2016, 18, 1550-1562.	2.6	34

PIERRE THUéRY

#	Article	IF	CITATIONS
73	Supramolecular assemblies from uranyl ion complexes of hexahomotrioxacalix[3]arenes and protonated [2.2.2]cryptand. New Journal of Chemistry, 2002, 26, 766-774.	2.8	33
74	Uranyl citrate dimers as guests in a copper–bipyridine framework: a novel heterometallic inorganic–organic hybrid compound. CrystEngComm, 2007, 9, 358-360.	2.6	33
75	Polyimido Clusters of Neodymium and Uranium, Including a Cluster with an M ₆ (ι4 ₃ â€N) ₈ Core. European Journal of Inorganic Chemistry, 2008, 2008, 5455-5459.	2.0	33
76	Uranyl–organic assemblies with the macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate (TETA). CrystEngComm, 2010, 12, 1905.	2.6	33
77	Versatility of {M(30-crown-10)} (M = K+, Ba2+) as a guest in UO22+complexes of [3.1.3.1]- and [3.3.3]homooxacalixarenes. CrystEngComm, 2007, 9, 582-590.	2.6	32
78	Solvent effects in solvo-hydrothermal synthesis of uranyl ion complexes with 1,3-adamantanediacetate. CrystEngComm, 2015, 17, 4006-4018.	2.6	32
79	Variations on the Honeycomb Topology: From Triangular- and Square-Grooved Networks to Tubular Assemblies in Uranyl Tricarballylate Complexes. Crystal Growth and Design, 2017, 17, 963-966.	3.0	32
80	A New Form of Triple-Stranded Helicate Found in Uranyl Complexes of Aliphatic α,ω-Dicarboxylates. Inorganic Chemistry, 2015, 54, 10539-10541.	4.0	31
81	Coordination Polymers and Frameworks in Uranyl Ion Complexes with Sulfonates and Cucurbit[6]uril. Crystal Growth and Design, 2011, 11, 5702-5711.	3.0	30
82	Uranyl Ion Complexes with Long-Chain Aliphatic α,ï‰-Dicarboxylates and 3d-Block Metal Counterions. Inorganic Chemistry, 2016, 55, 2133-2145.	4.0	30
83	Crystal Structure of a Uranyl/p-tert-Butylcalix[5]arene Complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 13-20.	1.6	29
84	Polynuclear uranium(IV) compounds with (μ3-oxo)U3 or (μ44-oxo)U4 cores and compartmental Schiff base ligands. Polyhedron, 2006, 25, 1537-1542.	2.2	29
85	Polyimido Uranium(IV) Clusters: Imidometalates with an M ₇ (μ4 ₃ â€N) ₆ (μ4 ₂ â€N) ₆ Core Analogous to the Andersonâ€Type Polyoxometalate Motif. Angewandte Chemie - International Edition, 2008, 47, 5586-5589.	213.8	29
86	Heterohelicenes through 1,3-Dipolar Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity, and Application to pH-Triggered Chiroptical Switch with CPL Sign Reversal. Jacs Au, 2021, 1, 807-818.	7.9	29
87	One- to three-dimensional uranyl–organic assemblies with 3-sulfophthalic and 5-sulfoisophthalic acids. CrystEngComm, 2013, 15, 2401.	2.6	28
88	Tetrahedral and Cuboidal Clusters in Complexes of Uranyl and Alkali or Alkaline-Earth Metal Ions with <i>rac</i> - and (1 <i>R</i> ,2 <i>R</i>)- <i>trans</i> -1,2-Cyclohexanedicarboxylate. Crystal Growth and Design, 2017, 17, 2881-2892.	3.0	28
89	Counterion-Controlled Formation of an Octanuclear Uranyl Cage with <i>cis</i> -1,2-Cyclohexanedicarboxylate Ligands. Inorganic Chemistry, 2018, 57, 6283-6288.	4.0	28
90	Breaking C–O Bonds with Uranium: Uranyl Complexes as Selective Catalysts in the Hydrosilylation of Aldehydes. ACS Catalysis, 2019, 9, 9025-9033.	11.2	28

#	Article	IF	CITATIONS
91	Structure-Directing Effects of Counterions in Uranyl Ion Complexes with Long-Chain Aliphatic α,ï‰-Dicarboxylates: 1D to Polycatenated 3D Species. Inorganic Chemistry, 2019, 58, 567-580.	4.0	28
92	The first crystal structure of an actinide complex of the macrocyclic ligand DOTA: a two-dimensional uranyl–organic framework. CrystEngComm, 2008, 10, 808.	2.6	27
93	Uranyl and mixed uranyl–lanthanide complexes with p-sulfonatocalix[4]arene. CrystEngComm, 2012, 14, 6369.	2.6	27
94	Molecular and Polymeric Uranyl and Thorium Complexes with Sulfonate ontaining Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 58-68.	2.0	27
95	Hetero(tri- and tetra-)nuclear complexes of uranyl and alkali metal (Li+, K+) ions with p-tert-butylhexahomotrioxacalix[6]arene. Polyhedron, 2004, 23, 649-654.	2.2	26
96	Supramolecular assemblages from uranyl complexes of calixarenes and potassium complexes of 18-crown-6 or dibenzo-18-crown-6. Inorganic Chemistry Communication, 2007, 10, 795-799.	3.9	26
97	Crown Ethers and Their Alkali Metal Ion Complexes as Assembler Groups in Uranyl–Organic Coordination Polymers with <i>cis</i> -1,3-, <i>cis</i> -1,2-, and <i>trans</i> -1,2-Cyclohexanedicarboxylates. Crystal Growth and Design, 2018, 18, 3167-3177.	3.0	25
98	Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit[6]uril. CrystEngComm, 2012, 14, 8128.	2.6	24
99	Structural Versatility of Uranyl(VI) Nitrate Complexes That Involve the Diamide Ligand Et2N(C=O)(CH2)n(C=O)NEt2 (0 वे‰क वे‰फ). European Journal of Inorganic Chemistry, 2012, 2012, 3747-3763.	2.0	24
100	Uranium(iv) complexes of calix[n]arenes (n = 4, 6 and 8). Chemical Communications, 2006, , 856.	4.1	23
101	Tubelike Uranyl–Phenylenediacetate Assemblies from Screening of Ligand Isomers and Structure-Directing Counterions. Inorganic Chemistry, 2019, 58, 6550-6564.	4.0	23
102	Tetrahydrofurantetracarboxylic Acid: An Isomerizable Framework-Forming Ligand in Homo- and Heterometallic Complexes with UO ₂ ²⁺ , Ag ⁺ , and Pb ²⁺ . Crystal Growth and Design, 2016, 16, 7083-7093.	3.0	22
103	Uranyl–Organic Coordination Polymers with <i>trans</i> -1,2-, <i>trans</i> -1,4-, and <i>cis</i> -1,4-Cyclohexanedicarboxylates: Effects of Bulky PPh ₄ ⁺ and PPh ₃ Me ⁺ Counterions. Crystal Growth and Design, 2018, 18, 2609-2619.	3.0	22
104	Chiral Discrete and Polymeric Uranyl Ion Complexes with (1 <i>R</i> ,3 <i>S</i>)-(+)-Camphorate Ligands: Counterion-Dependent Formation of a Hexanuclear Cage. Inorganic Chemistry, 2019, 58, 870-880.	4.0	22
105	From Helicates to Borromean Links: Chain Length Effect in Uranyl Ion Complexes of Aliphatic α,ω-Dicarboxylates. Crystal Growth and Design, 2016, 16, 546-549.	3.0	21
106	Closed Uranyl–Dicarboxylate Oligomers: A Tetranuclear Metallatricycle with Uranyl Bridgeheads and 1,3-Adamantanediacetate Linkers. Inorganic Chemistry, 2018, 57, 7932-7939.	4.0	21
107	Two-dimensional assemblies in f-element ion (UO22+, Yb3+) complexes with two cyclohexyl-based polycarboxylates. Polyhedron, 2015, 98, 5-11.	2.2	20
108	Two- and Three-Dimensional Europiumâ^'Organic Assemblies with the all-cis and all-trans Isomers of 1,2,3,4,5,6-Cyclohexanehexacarboxylic Acid. Crystal Growth and Design, 2010, 10, 3626-3631.	3.0	19

#	Article	IF	CITATIONS
109	Uranyl Ion Complexes with <i>trans</i> â€3â€(3â€Pyridyl)acrylic Acid Including a Uranyl–Copper(II) Heterometallic Framework. European Journal of Inorganic Chemistry, 2014, 2014, 4772-4778.	2.0	19
110	The sulfonate group as a ligand: a fine balance between hydrogen bonding and metal ion coordination in uranyl ion complexes. Dalton Transactions, 2019, 48, 8756-8772.	3.3	19
111	Uranyl ions as supramolecular linkers in a bis(hexahomotrioxacalix[6]arene) hexa-uranate complex. Dalton Transactions RSC, 2001, , 3410-3412.	2.3	18
112	Uranyl Ion Complexes with Chiral Malic and Citramalic, and Prochiral Citric and Tricarballylic Acids: Influence of Coligands and Additional Metal Cations. European Journal of Inorganic Chemistry, 2018, 2018, 1016-1027.	2.0	18
113	Strainâ€Promoted 1,3â€Dithioliumâ€4â€olates–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 14544-14548.	13.8	18
114	Additive-Free Formic Acid Dehydrogenation Catalyzed by a Cobalt Complex. Organometallics, 2021, 40, 565-569.	2.3	18
115	One-dimensional uranium–organic coordination polymers: crystal and electronic structures of uranyl-diacetohydroxamate. Dalton Transactions, 2011, 40, 6007.	3.3	17
116	Copper-Catalyzed Aza-Iminosydnone-Alkyne Cycloaddition Reaction Discovered by Screening. ACS Catalysis, 2018, 8, 11882-11888.	11.2	17
117	Functionalized Aromatic Dicarboxylate Ligands in Uranyl–Organic Assemblies: The Cases of Carboxycinnamate and 1,2-/1,3-Phenylenedioxydiacetate. Inorganic Chemistry, 2020, 59, 2923-2936.	4.0	17
118	Uranyl ion complexation by the tripodal ligand nitrilotriacetate. Inorganic Chemistry Communication, 2007, 10, 423-426.	3.9	16
119	Complexes of sodium and caesium perrhenates with calix[4]arene bis(crown-6): a model for pertechnetate ion extraction. Polyhedron, 2000, 19, 1749-1756.	2.2	15
120	Neodymium(iii)d(–)-citramalate: a chiral three-dimensional framework with water-filled channels. CrystEngComm, 2007, 9, 460-462.	2.6	15
121	Di-2-pyridyl ketone in actinide chemistry: Dinuclear uranyl complexes. Polyhedron, 2010, 29, 1593-1599.	2.2	15
122	Uranyl Ion-Containing Polymeric Assemblies with <i>cis</i> / <i>trans</i> Isomers of 1,2-, 1,3-, and 1,4-Cyclohexanedicarboxylates, Including a Helical Chain and a 6-Fold-Interpenetrated Framework. Crystal Growth and Design, 2020, 20, 262-273.	3.0	15
123	Structure-Directing Effects of Coordinating Solvents, Ammonium and Phosphonium Counterions in Uranyl Ion Complexes with 1,2-, 1,3-, and 1,4-Phenylenediacetates. Inorganic Chemistry, 2020, 59, 2503-2518.	4.0	15
124	Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation. Journal of the American Chemical Society, 2021, 143, 5659-5665.	13.7	15
125	Synthesis and crystal structure of [UO2(BH4)2(hmpa)2], a novel uranyl complex and the first metal oxoborohydride. Inorganic Chemistry Communication, 2007, 10, 891-893.	3.9	14
126	Cavity Formation in Uranyl Ion Complexes with Kemp's Tricarboxylate: Grooved Diperiodic Nets and Polynuclear Cages. Inorganic Chemistry, 2021, 60, 1683-1697.	4.0	14

#	Article	IF	CITATIONS
127	One-dimensional uranium–organic framework in <i>catena</i> -poly[[di-μ ₂ -hydroxido-bis[dioxouranium(VI)]]-di-μ ₂ -2-pyridylacetato Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m50-m52.	-Î⁰ os up>3∢	<b 18p> <i>O<</i>
128	π-Stacking and hydrogen bonding incatena-poly[[(4,4′-bipyridine-κN)dioxouranium(VI)]-di-μ-hydroxo]. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m54-m56.	0.4	12
129	Metal–organic frameworks built from alkali metal ions (Li+–Cs+) and 1,2,3,4-cyclobutanetetracarboxylic acid. CrystEngComm, 2014, 16, 1724.	2.6	12
130	Crystal Growth and Characterization of HgBa ₂ Ca ₂ Cu ₃ O _{8+Î′} Superconductors with the Highest Critical Temperature at Ambient Pressure. Inorganic Chemistry, 2017, 56, 9396-9399.	4.0	12
131	Ni(2,2′:6′,2″-Terpyridine-4′-carboxylate) ₂ Zwitterions and Carboxylate Polyanions in Mixed-Ligand Uranyl Ion Complexes with a Wide Range of Topologies. Inorganic Chemistry, 2022, 61, 9725-9745.	4.0	12
132	Crystal structure of first- and second-sphere complexes of uranyl nitrate with 1,2- and 1,4-diols. Polyhedron, 2004, 23, 1613-1618.	2.2	11
133	Synthesis and crystal structure of uranium(iv) complexes with calix[n]arenes (n = 4, 6 and 8): mononuclear, polynuclear and 1D polymeric species. Dalton Transactions, 2006, , 3629-3637.	3.3	11
134	Complexation of Uranyl Ion with Sulfonates: One―to Threeâ€Dimensional Assemblies with 1,5―and 2,7â€Naphthalenedisulfonates. European Journal of Inorganic Chemistry, 2017, 2017, 979-987.	2.0	11
135	1,2-, 1,3-, and 1,4-Phenylenediacetate Complexes of the Uranyl Ion with Additional Metal Cations and/or Ancillary <i>N</i> -Donor Ligands: Confronting Ligand Geometrical Proclivities. Crystal Growth and Design, 2019, 19, 6611-6626.	3.0	11
136	Access to <i>N</i> -Carbonyl Derivatives of Iminosydnones by Carbonylimidazolium Activation. Organic Letters, 2020, 22, 2403-2408.	4.6	11
137	Uranyl Tricarballylate Triperiodic and Nanotubular Species. Counterion Control of Nanotube Diameter. Inorganic Chemistry, 2020, 59, 6953-6962.	4.0	11
138	Contrasting Structure-Directing Effects in the Uranyl–Phthalate/Isophthalate Isomer Systems. Crystal Growth and Design, 2021, 21, 3000-3013.	3.0	11
139	Copper–Ligand Cooperativity in H ₂ Activation Enables the Synthesis of Copper Hydride Complexes. Organometallics, 2021, 40, 2064-2069.	2.3	11
140	Interlocked aromatic species: Crystal structure and Hirshfeld surface analysis of the uranyl ion complex of 3-(pyrimidin-2-yl)benzoate with Ni(phen) 3 2+ counter-ions. Inorganic Chemistry Communication, 2015, 59, 25-27.	3.9	10
141	Uranyl Complexes as Scaffolding or Spacers for Cucurbit[6]uril Molecules in Homo―and Heterometallic Species, Including a Uranyl–Lanthanide Complex. European Journal of Inorganic Chemistry, 2017, 2017, 2876-2882.	2.0	10
142	Strainâ€Promoted 1,3â€Dithioliumâ€4â€olates–Alkyne Cycloaddition. Angewandte Chemie, 2019, 131, 14686	-124690.	10
143	1,3-Adamantanedicarboxylate and 1,3-Adamantanediacetate as Uranyl Ion Linkers: Effect of Counterions, Solvents and Differences in Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4440-4449.	2.0	10
144	Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: influences of transition metal ion coordination and differential U ^{VI} chelation. Dalton Transactions, 2020, 49, 817-828.	3.3	10

#	Article	IF	CITATIONS
145	Isomerism in Benzenetricarboxylates: Variations in the Formation of Coordination Polymers with Uranyl Ion. Crystal Growth and Design, 2020, 20, 7368-7383.	3.0	10
146	Uranyl Ion Complexes of Polycarboxylates: Steps towards Isolated Photoactive Cavities. Chemistry, 2020, 2, 63-79.	2.2	10
147	Photocatalytic deoxygenation of N–O bonds with rhenium complexes: from the reduction of nitrous oxide to pyridine <i>N</i> -oxides. Chemical Science, 2021, 12, 10266-10272.	7.4	10
148	Optimizing Photoluminescence Quantum Yields in Uranyl Dicarboxylate Complexes: Further Investigations of 2,5â€, 2,6†and 3,5â€Pyridinedicarboxylates and 2,3â€Pyrazinedicarboxylate. European Journal of Inorganic Chemistry, 2020, 2020, 4391-4400.	2.0	10
149	Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands. Journal of Solid State Chemistry, 2015, 227, 265-272.	2.9	9
150	The crystalline α,ω-dicarboxylate metal complex with the longest aliphatic chain to date: uranyl 1,15-pentadecanedioate. Dalton Transactions, 2017, 46, 13677-13680.	3.3	9
151	Complexes of Uranyl Ions with Aromatic Di―and Tetracarboxylates Involving [Ni(bipy) <i>_n</i>] ²⁺ (<i>n</i> = 2, 3) Counterions. European Journal of Inorganic Chemistry, 2017, 2017, 5451-5460.	2.0	9
152	A Practical Synthesis of Valuable Strained Eightâ€Memberedâ€Ring Derivatives for Click Chemistry. European Journal of Organic Chemistry, 2018, 2018, 2000-2008.	2.4	9
153	Favoring Framework Formation through Structure-Directing Effects in Uranyl Ion Complexes with 1,2,3,4-(Cyclo)butanetetracarboxylate Ligands. Crystal Growth and Design, 2019, 19, 4109-4120.	3.0	9
154	2,5-Thiophenedicarboxylate: An Interpenetration-Inducing Ligand in Uranyl Chemistry. Inorganic Chemistry, 2021, 60, 9074-9083.	4.0	9
155	A Bis(p-tert-butyloctahomotetraoxacalix[8]arene) Capsule with [(UO2)2(OH)2] Links and a Disordered [Rb4(H2O)4] Inner Core. Supramolecular Chemistry, 2004, 16, 81-86.	1.2	8
156	Uranium(IV) Complexes of Calix[5]arene. European Journal of Inorganic Chemistry, 2006, 2006, 4289-4293.	2.0	8
157	Secondâ€Sphere Complexation of Thorium(IV) by Cucurbit[6]uril with Included Perrhenate Counterions – Crystal Structure and Hirshfeld Surface Analysis. European Journal of Inorganic Chemistry, 2015, 2015, 2037-2040.	2.0	8
158	Functionalization of Bambusurils by a Thiol–Ene Click Reaction and a Facile Method for the Preparation of Anionâ€Free Bambus[6]urils. Chemistry - A European Journal, 2018, 24, 10793-10801.	3.3	8
159	Synthesis and Suzuki–Miyaura cross coupling reactions for post-synthetic modification of a tetrabromo-anthracenyl porphyrin. Organic and Biomolecular Chemistry, 2018, 16, 8106-8114.	2.8	8
160	Uranyl ion complexes with 2,2′:6′,2′′-terpyridine-4′-carboxylate. Interpenetration of networks involv "expanded ligands― CrystEngComm, 2021, 23, 7305-7313.	'ing 2:6	8
161	Lead(ii): Lewis acid and occasional base, as illustrated by its complex with 1,5-naphthalenedisulfonate and 5-methyl-1,10-phenanthroline. Dalton Transactions, 2017, 46, 11533-11536.	3.3	7
162	Dipodal, Tripodal, and Discoidal Coordination Modes of Kemp's Triacid Anions. European Journal of Inorganic Chemistry, 2020, 2020, 749-756.	2.0	7

PIERRE THUéRY

#	Article	IF	CITATIONS
163	Stepwise Introduction of Flexibility into Aromatic Dicarboxylates Forming Uranyl Ion Coordination Polymers: a Comparison of 2â€Carboxyphenylacetate and 1,2â€Phenylenediacetate. European Journal of Inorganic Chemistry, 2021, 2021, 2182-2192.	2.0	6
164	The Role of (^{<i>t</i>Bu} POCOP)Ir(I) and Iridium(III) Pincer Complexes in the Catalytic Hydrogenolysis of Silyl Triflates into Hydrosilanes. Organometallics, 2022, 41, 1786-1796.	2.3	6
165	Plumbing the uncertainties of solvothermal synthesis involving uranyl ion carboxylate complexes. CrystEngComm, 2022, 24, 1475-1484.	2.6	6
166	Varying Structureâ€Directing Anions in Uranyl Ion Complexes with Ni(2,2′ : 6′,2′′â€ŧerpyridineâ€4′â€ɛarboxylate) ₂ . European Journal of Inorga	ni č C hemis	stry, 2022, 20
167	Conformation of cis,trans-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid derivatives: crystal structures and semiempirical molecular orbital calculations. Journal of the Chemical Society Perkin Transactions II, 1999, , 2077-2082.	0.9	5
168	Clickable Bambusurils to Access Multivalent Architectures. Organic Letters, 2020, 22, 3099-3103.	4.6	5
169	Relevance of Single-Transmetalated Resting States in Iron-Mediated Cross-Couplings: Unexpected Role of Ï <i>f</i> -Donating Additives. Inorganic Chemistry, 2021, 60, 7991-7997.	4.0	5
170	Filling the equatorial garland of uranyl ion: its content and limitations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 89-98.	1.6	4
171	Uranyl(VI) Triflate as Catalyst for the Meerwein–Ponndorf–Verley Reaction. Inorganic Chemistry, 2021, 60, 16140-16148.	4.0	4
172	Contrasting Networks and Entanglements in Uranyl Ion Complexes with Adipic and <i>trans</i> , <i>trans</i> .Muconic Acids. Inorganic Chemistry, 2022, 61, 2790-2803.	4.0	4
173	Metalâ€Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
174	Charge Localisation in Heavy Alkali Metal Ion Complexes of 4,4'-Biphenyldicarboxylate. Australian Journal of Chemistry, 2016, 69, 505.	0.9	3
175	Three Different Modes of Association between Metal Cations in Heterometallic Uranyl–Co ^{III} and Uranyl–Mn ^{II} Species. European Journal of Inorganic Chemistry, 2018, 2018, 4465-4471.	2.0	3
176	Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions. Chemistry, 2021, 3, 199-227.	2.2	3
177	Uranyl complexes with 1,2-diols and tetrahydrofurfuryl alcohols. Polyhedron, 2012, 46, 133-138.	2.2	2
178	Element 92 – Uranium. Australian Journal of Chemistry, 2019, 72, 329.	0.9	2
179	A chiral uranyl-Kemp's tricarboxylate cubic framework: structure-directing effect of counterions with three-fold rotational symmetry. Dalton Transactions, 2021, 50, 11021-11024.	3.3	1

180

Chain, Network and Framework Formation in Uranyl Ion Complexes with 1,1′â€Biphenylâ€3,3′,4,4′â€Tetracarboxylate. European Journal of Inorganic Chemistry, 2021, 2021, 3699-3907. 1

#	Article	IF	CITATIONS
181	Uranyl Ion Coordination by Benzeneâ€1,2,3â€tricarboxylate: Building Chains and Networks from Binuclear Bricks. European Journal of Inorganic Chemistry, 2022, 2022, e202100917.	2.0	1
182	Lead(II) complexes with Kemp's tricarboxylate: Can lone pair activity be discerned?. Polyhedron, 2022, 218, 115760.	2.2	1
183	Multiple aspects of chirality in coordination polymers formed by the uranyl ion with (1R,3S)-(+)-camphorate ligands. Polyhedron, 2022, 218, 115764.	2.2	1
184	Metalâ€Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes**. Angewandte Chemie, 0, , .	2.0	0