List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drosophila E93 promotes adult development and suppresses larval responses to ecdysone during metamorphosis. Developmental Biology, 2022, 481, 104-115.	2.0	10
2	ESCRT dysfunction compromises endoplasmic reticulum maturation and autophagosome biogenesis in Drosophila. Current Biology, 2022, 32, 1262-1274.e4.	3.9	9
3	Atg6 promotes organismal health by suppression of cell stress and inflammation. Cell Death and Differentiation, 2022, 29, 2275-2287.	11.2	1
4	VPS13D promotes peroxisome biogenesis. Journal of Cell Biology, 2021, 220, .	5.2	47
5	Histological assessment of developmental cell death in Drosophila pupae. STAR Protocols, 2021, 2, 100473.	1.2	2
6	Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease. Current Biology, 2021, 31, 3028-3039.e7.	3.9	25
7	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
8	Vps13D functions in a Pink1-dependent and Parkin-independent mitophagy pathway. Journal of Cell Biology, 2021, 220, .	5.2	27
9	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 1(0 Tf 50 422 To
10	Autophagy in animal development. Cell Death and Differentiation, 2020, 27, 903-918.	11.2	66
11	A conserved myotubularin-related phosphatase regulates autophagy by maintaining autophagic flux. Journal of Cell Biology, 2020, 219, .	5.2	17
12	Discovery of Novel Regulators of Autophagy in Animals. Innovation in Aging, 2020, 4, 744-744.	0.1	0
13	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	Ο
14	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
15	Vps13D Encodes a Ubiquitin-Binding Protein that Is Required for the Regulation of Mitochondrial Size and Clearance. Current Biology, 2018, 28, 287-295.e6.	3.9	115
16	The NF- \hat{I}^{0} B Factor Relish Regulates Atg1 Expression and Controls Autophagy. Cell Reports, 2018, 25, 2110-2120.e3.	6.4	31
17	Autophagy Promotes Tumor-like Stem Cell Niche Occupancy. Current Biology, 2018, 28, 3056-3064.e3.	3.9	28
18	The Proton-Coupled Monocarboxylate Transporter Hermes Is Necessary for Autophagy during Cell Death. Developmental Cell, 2018, 47, 281-293.e4.	7.0	17

#	Article	IF	CITATIONS
19	Life, death and autophagy. Nature Cell Biology, 2018, 20, 1110-1117.	10.3	492
20	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
21	Cleaning House: Selective Autophagy of Organelles. Developmental Cell, 2017, 41, 10-22.	7.0	474
22	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
23	Complement-Related Regulates Autophagy in Neighboring Cells. Cell, 2017, 170, 158-171.e8.	28.9	56
24	Ral <scp>GTP</scp> ase and the exocyst regulate autophagy in a tissueâ€specific manner. EMBO Reports, 2016, 17, 110-121.	4.5	24
25	Autophagy is not the answer. Nature, 2015, 528, 482-483.	27.8	25
26	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	7.8	1,012
27	Autophagy, cell death, and cancer. Molecular and Cellular Oncology, 2015, 2, e985913.	0.7	144
28	Eaten alive: novel insights into autophagy from multicellular model systems. Trends in Cell Biology, 2015, 25, 376-387.	7.9	92
29	Autophagy in Cell Life and Cell Death. Current Topics in Developmental Biology, 2015, 114, 67-91.	2.2	132
30	Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 2014, 15, 81-94.	37.0	1,769
31	Eaten to death. FEBS Journal, 2014, 281, 5411-5417.	4.7	24
32	miR-14 Regulates Autophagy during Developmental Cell Death by Targeting ip3-kinase 2. Molecular Cell, 2014, 56, 376-388.	9.7	62
33	Autophagy and Cell Death in the Fly. Methods in Enzymology, 2014, 545, 181-199.	1.0	5
34	Uba1 functions in Atg7- and Atg3-independent autophagy. Nature Cell Biology, 2013, 15, 1067-1078.	10.3	165
35	<i>Atg6</i> is required for multiple vesicle trafficking pathways and hematopoiesis in <i>Drosophila</i> . Development (Cambridge), 2013, 140, 1321-1329.	2.5	96
36	The Role of Autophagy in Drosophila Metamorphosis. Current Topics in Developmental Biology, 2013, 103, 101-125.	2.2	58

#	Article	IF	CITATIONS
37	Regulation and Function of Autophagy during Cell Survival and Cell Death. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008813-a008813.	5.5	302
38	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
39	Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7826-7831.	7.1	249
40	Distinct death mechanisms in Drosophila development. Current Opinion in Cell Biology, 2010, 22, 889-895.	5.4	61
41	Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature, 2010, 465, 942-946.	27.8	1,303
42	Activation of autophagy during cell death requires the engulfment receptor Draper. Nature, 2010, 465, 1093-1096.	27.8	117
43	Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late <i>Drosophila melanogaster</i> oogenesis. Journal of Cell Biology, 2010, 190, 523-531.	5.2	224
44	Dynein light chain 1 is required for autophagy, protein clearance, and cell death in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 742-747.	7.1	50
45	The engulfment receptor Draper is required for autophagy during cell death. Autophagy, 2010, 6, 1192-1193.	9.1	17
46	Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy. Autophagy, 2010, 6, 163-165.	9.1	53
47	Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila. Current Biology, 2009, 19, 1741-1746.	3.9	337
48	Autophagy in Drosophila melanogaster. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1452-1460.	4.1	96
49	Autophagy SEPArates Germline and Somatic Cells. Cell, 2009, 136, 207-208.	28.9	2
50	Warts Is Required for PI3K-Regulated Growth Arrest, Autophagy, and Autophagic Cell Death in Drosophila. Current Biology, 2008, 18, 1466-1475.	3.9	55
51	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
52	The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in <i>Drosophila </i> . Journal of Cell Biology, 2008, 181, 655-666.	5.2	299
53	Eating on the fly: Function and regulation of autophagy during cell growth, survival and death in Drosophila. Autophagy, 2008, 4, 557-562.	9.1	48
54	Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila. Cell, 2007, 131, 1137-1148.	28.9	547

#	Article	IF	CITATIONS
55	HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 2007, 447, 860-864.	27.8	1,068
56	Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4952-4957.	7.1	619
57	The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development (Cambridge), 2006, 133, 3305-3315.	2.5	130
58	Growth Control: p53, the Guardian Angel of Compensatory Proliferation. Current Biology, 2006, 16, R840-R842.	3.9	4
59	Autophagy: dual roles in life and death?. Nature Reviews Molecular Cell Biology, 2005, 6, 505-510.	37.0	889
60	Caspases function in autophagic programmed cell death in Drosophila. Development (Cambridge), 2004, 131, 275-284.	2.5	227
61	Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics, 2004, 5, 84.	2.6	68
62	Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science, 2004, 304, 1500-1502.	12.6	1,197
63	Genome-Wide Analyses of Steroid- and Radiation-Triggered Programmed Cell Death in Drosophila. Current Biology, 2003, 13, 350-357.	3.9	198
64	miRNAs: Micro Managers of Programmed Cell Death. Current Biology, 2003, 13, R473-R475.	3.9	71
65	Caspase Activation Finds Fertile Ground. Developmental Cell, 2003, 4, 608-609.	7.0	8
66	Steroid Regulation of Midgut Cell Death during Drosophila Development. Developmental Biology, 2002, 250, 101-111.	2.0	199
67	Genetic Mechanism for the Stage- and Tissue-Specific Regulation of Steroid Triggered Programmed Cell Death in Drosophila. Developmental Biology, 2002, 252, 138-148.	2.0	108
68	How death shapes life during development. Nature Reviews Molecular Cell Biology, 2002, 3, 779-787.	37.0	362
69	Genetic regulation of programmed cell death in Drosophila. Cell Research, 2000, 10, 193-204.	12.0	26
70	E93 Directs Steroid-Triggered Programmed Cell Death in Drosophila. Molecular Cell, 2000, 6, 433-443.	9.7	181
71	Ecdysone signaling cascade and regulation ofDrosophila metamorphosis. , 1996, 33, 231-244.		68
72	The Drosophila E93 Gene from the 93F Early Puff Displays Stage- and Tissue-Specific Regulation by 20-Hydroxyecdysone. Developmental Biology, 1995, 171, 85-97.	2.0	142

5

#	Article	IF	CITATIONS
73	A molecular mechanism for the stage specificity of the Drosophila prepupal genetic response to ecdysone. Cell, 1994, 79, 607-615.	28.9	214